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Introduction

Abstract
t1 is the first interop rollup designed to fix fragmentation and composability challenges in 
scaling Ethereum. By leveraging AVS-secured Trusted Execution Environments (TEE), t1 
introduces Real-Time Proofs (RTP) that prove the integrity of t1 execution to Ethereum in 
less time than it takes to create a block on Ethereum (12 seconds). By running third-party 
Partner Rollup nodes in its TEE node infrastructure, t1 also aggregates and proves their 
needed state to Ethereum in real-time. As a result, t1 enables instant settlement between any 
combination of Partner Rollups and Ethereum L1, providing fast composability. 

Execution in t1 is cryptographically verified via zk-compressed TEE Remote Attestation, 
ensuring that all involved state transitions are provably correct, tamper-proof, and bound to 
the current protocol version. In addition to real-time proving, t1 supports general-purpose 
smart contract programmability in its blockspace, and enables writes to Partner Rollups. This 
architecture offers a foundation for building new and enhancing existing cross-chain 
applications—such as yield aggregators, lending protocols, and decentralized exchanges—
that require fast, programmable interoperability without reliance on third-party bridges or 
message-passing systems. 

t1’s mission is to unify Ethereum and its rollup ecosystem by creating a real-time proof-
powered liquidity layer that enables the best user experience on cross-chain applications.
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Problem
The current rollup-centric scaling strategy has delivered lower fees and higher throughput, at 
the cost of fragmentation. Liquidity and user activity are now spread across hundreds of 
rollups, forcing developers to bring their applications multi-chain—by leveraging third-party 
bridges and messaging protocols. Despite widespread efforts to improve interoperability, the 
current landscape remains siloed:

Most L2 interoperability efforts focus on specific rollup stacks rather than the entire 
ecosystem. These efforts reduce the number of siloes yet solidify existing siloes rather 
than eliminating them.
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Interoperability protocols enable message passing and proof generation, but forego 
the benefits of programmability. As a result, each chain remains a siloed execution 
environment. Users must take separate actions on each chain, adding friction, cost, and 
fragmentation.

Real-Time Proving in zero-knowledge, especially for L2-level compute throughput, is 
still far out, both because of proving times, but also due to the complexity and bug 
potentials in zkVMs.

As a result, no existing application can offer a seamless, cross-chain user experience today 
without the complexities and risks of introducing third-party bridges or messaging protocols. 
Without a fundamental shift in how interoperability is achieved, Ethereum risks developing 
into a fragmented network where composability remains trapped within silos.

Solution
t1 introduces a Trusted Execution Environment (TEE) Real-Time Proving (RTP) rollup to 
solve fragmentation in the Ethereum ecosystem today. 

Real-Time Proving
RTP allows t1 to prove its state to Ethereum L1 on every L1 block. This means:

Users can enjoy the low cost and high speed of rollups while their assets may effectively 
be viewed as remaining on Ethereum: Funds on t1 can be withdrawn to an L1 account 
within a single block, making interacting with t1 feel similar to interacting with a smart 
contract on L1.

Applications on Ethereum and on Partner Rollups can quickly access t1 state (incl. 
liquidity) because it can be proven to Ethereum on every L1 block.

Applications on t1 can verify state changes in Ethereum and Partner Rollups and create 
cross-chain proofs. This is achieved by running Partner Rollup follower nodes within t1.

Programmability
Programmability enables t1 to do more than just Real-Time Proving. Smart contracts create a 
programmable hub for liquidity and cross-chain interactions. Programmability enables 
components currently deployed off-chain, such as relayer and solver networks for ERC-7683 
protocols, to be brought on-chain. Programmability also enables t1 to become a cross-chain 
liquidity hub in addition to just being a bridge or a proving system that merely passes proofs 
across blockchains. This means we can now build collateral accounts, lending-borrowing 
primitives, and orderbooks—but in the cross-chain paradigm.
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Furthermore, t1’s architecture is designed to allow for cross-chain application experiences 
without needing buy-in from any rollup/L2 or application. In that sense, t1 is the much-
needed permissionless cross-chain application platform.

What are TEEs?
Trusted Execution Environments (TEEs) are specialized hardware-based environments that 
isolate sensitive computations and data from the rest of the system, ensuring that data is 
processed correctly and (optionally) privately.

In particular, TEEs provide verifiable computation guarantees through a process called 
“Remote Attestation” which proves to external verifying parties that the TEE in question is 
running a specific, unmodified piece of software (bytecode), without any tampering. Verifiers 
can then use this attestation and combine it with an understanding of what the bytecode is 
doing in order to confirm that a TEE’s output is indeed trustworthy.

Optionally, TEEs can preserve privacy by keeping sensitive data and execution logic 
concealed from the broader system and external observers.

How do they help?
Two key requirements for achieving full interop unification of Ethereum and the rollup 
ecosystem, without reorg risks and asynchrony, would be shared sequencing across all chains, 
and real-time proving (RTP). The former does not seem realistic at this point.

At t1, we are working on RTP by employing TEEs. However, TEEs also help with cross-
chain composability by enabling follower nodes in t1 to read data from and write data to 
Partner Rollups. This setup allows t1 to aggregate the state of Ethereum and Partner Rollups 
without requiring shared sequencing (or any opt-in), with a best-effort approach where the 
asynchrony is not bounded in theory, but low in practice. 

And again, RTP enables t1 state (which is dependent on Partner Rollups’ state implicitly) to 
have an asynchrony window with Ethereum that is as low as a single-block (12 seconds)—a 
substantial improvement over the current seven-day window in Optimistic Rollups and hours-
long window in Zero-Knowledge Rollups.

In addition to RTP and cross-chain communication, TEEs allow t1 to offer a partially-
encrypted mempool. Such a mempool prevents adversarial reordering, such as sandwich 
attacks, where an attacker observes a pending user transaction and places trades before (front-
running) and after (back-running) it, profiting at the expense of regular users. Sandwich 
attacks cost Ethereum users over $100mn every year [1]. An encrypted mempool or 
ephemerally-private blockspace may also facilitate use cases like sealed-bid auctions and 
information-incomplete games.
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Architecture

Protocol design
t1 is an EVM-based rollup that generates real-time proofs to provide cross-chain application 
infrastructure. In its currently planned long-term form, t1 combines the verifiable 
computation guarantees of Trusted Execution Environments (TEE) with additional defense 
layers such as economic security (AVS) and bespoke zero-knowledge proofs (ZKP) to enable 
fast and secure proof generation. t1 has two network stakeholders:

Sequencers are a highly decentralized set of nodes tasked with blindly finalizing the 
ordering of partially-encrypted transactions in a t1 block. Since Sequencers only order 
transactions rather than executing them (meaning lower hardware and network 
requirements, in particular no TEE requirement), t1 can achieve high decentralization and
censorship resistance. Sequencers provide proofs of Sequencing Consensus. More: .

Executors are a network of TEE-enabled nodes tasked with executing state changes given 
the ordered sequences of transaction bundles determined by the Sequencers. Executors 
provide proofs of Execution Consensus. More: .

t1 produces blocks every second. Each block involves two sequential steps: 

Tx data broadcast and bundle finalization by Sequencers (incl. Sequencing Consensus 
proof).

Execution into a block and agreement about the new state, reached by TEE-enabled 
Executors (incl. Execution Consensus proof).

Both Sequencing Consensus and Execution Consensus are required to update the state of t1 
(aka trie root tuple) on Ethereum. Only then will t1 bridge contracts on Ethereum and Partner 
Rollups be able to be “convinced” to, e.g., release their funds to withdrawing users.

As t1’s interim form gradually becomes a fully permissionless network, it’s essential to 
implement mitigations against potential TEE exploits and develop defense-in-depth 
strategies. To this end, t1 leverages two sets of EigenLayer Autonomous Verifiable Services 
(AVS) validators to derive its crypto-economic security from restaked assets, providing a 
programmatic insurance budget on top of TEE guarantees.

However, an attacker controlling more than the crypto-economic security of the Execution 
AVS stake and also the necessary TEEs (that they managed to compromise) could produce an 
integrity proof for a fraudulent new state of t1. For this attack to be economically viable, the 
value-at-risk would need to be higher than the slashable Execution AVS stake. To ensure that 
t1’s economic activity is not bound by this security budget, we introduce a bespoke ZKP 
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mechanism as an additional defense layer: t1 uses incentivized periodic ZKP to create 
checkpoints. When cumulative value-at-risk since the last checkpoint is about to exceed the 
crypto-economic security budget, the Canonical Bridge will require the provision of an on-
demand ZKP before it accepts such a new t1 state—halting finalization until then. However, 
with adequate t1 gas price policies incentivizing proactive checkpoint creation before any 
finalization halting is needed, we don’t expect this situation to ever happen under normal 
conditions, achieving a good tradeoff between finalization latency and hard-times resilience.

Note: ZKP generation will likely be outsourced to a network that can meet the latency and 
cost requirements.

Architecture diagram

Flow
1. A user, Alice, deposits funds to a t1 bridge contract on Ethereum or on a Partner Rollup. 

Once the deposit is confirmed on the source chain, it gets processed by t1, and Alice gets 
her funds credited towards her aggregate t1 balance.

Note: Recent progress on Fast Confirmation Rule (FCR) (aka Fast Synchronous 
Finality / FSF) directly contributes to t1’s ability to interpret both Ethereum’s state 
and also “secure” Partner Rollups’ states as sufficiently finalized significantly faster 
than under the standard finalized-tag (~16 minutes) assumption—drastically 
lessening the risk of t1 needing to reorg together with an L1 reorg (or only being 
able to credit user deposit/inbox transactions with a finalized-tag-level delay).
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This is true for a Partner Rollup if it is parameterized to operate in the most secure 
mode of t1 only deeming such Partner Rollup states as final whose DA has been 
posted to Ethereum and is viewed as finalized there. Less secure and significantly 
faster modes for Partner Rollups are possible which introduce the trust assumption 
in the Partner Rollup sequencer and depend on its p2p/gossip network layer. Hybrid 
modes with capped value-in-flight are conceivable, too.

2. Alice changes her wallet’s network to t1, creates a t1-native transaction (with some fields 
encrypted to the shared rotating TEE pubkey), uses her wallet to sign it, and submits it to 
the network (i.e. the t1 mempool); this may or may not be a specially-treated withdrawal 
transaction (to Ethereum or a Partner Rollup).

3. A t1 Sequencer receives and gossips such a partially-blind transaction to other 
Sequencers in the t1 Sequencing AVS network.

4. After collecting transactions for one t1 slot (currently set to one second), the slot-leading 
Sequencer proposes an ordering (a blind non-executed bundle). The rest of the 
Sequencers vote on it using Espresso HotShot to form Sequencing Consensus. This 
bundle and a proof of Sequencing Consensus is then passed on to the Execution AVS 
network.

5. t1 Executors validate the proof of Sequencing Consensus, decrypt the encrypted parts of 
the received bundle (if needed and due) using their TEE-derived shared rotating private 
key, and execute its now fully plaintext ordered transactions against the current state of 
the t1 blockchain. The slot-leading Executor proposes a new trie root tuple r of state trie 
root, withdrawals trie root, and proof-of-read trie root—and the rest of the Executors vote 
on such new trie tuple r to form Execution Consensus.

Note: Executors use follower nodes also running in TEEs to read from and write to 
Partner Rollups (whenever required by a t1 tx).

6. The Execution AVS posts t1’s new trie roots r and all the corresponding consensus proofs 
to the Ethereum t1 Canonical Bridge contract and the full compressed transactions to 
Ethereum blob DA.

In addition, t1 progressively incentivizes the generation and posting of periodic 
ZKPs to the Canonical Bridge on Ethereum to create ZKP checkpoints, resetting the 
value-at-risk counters and also speeding up the potential on-demand ZKP creation 
when required. t1 dynamic gas pricing considers how much AVS security budget is 
still available to reach an equilibrium.

In the rare event that new t1 transactions’ (as per all new trie root tuples) cumulative 
value since the last ZKP checkpoint, despite the mechanisms above, would exceed 
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the crypto-economic security budget provided by Execution AVS, also an on-demand 
ZKP is required by the Canonical Bridge, pausing finalization until then; this would 
increase the withdrawal delay to hours under such extreme conditions.

7. t1’s Canonical Bridge contract on Ethereum checks the new submitted t1 trie root tuple r, 
Sequencing Consensus, Execution Consensus, and transaction data availability for 
consistency. If successful, such r is accepted. This then generally facilitates withdrawals 
from t1 to Ethereum with a single-Ethereum-block delay only (i.e. 6 seconds on average).

Suppose Alice had desired to withdraw funds in step 2. She may now submit to the 
Canonical Bridge an Ethereum claim transaction with an inclusion proof of her 
withdrawal transaction in t1 (as contained within the withdrawal trie committed to in 
r). The contract then releases the funds to Alice on Ethereum.

8. If Alice wishes to withdraw funds to her account on a Partner Rollup rather than on 
Ethereum, the same trie root tuple r update in the Canonical Bridge (i.e., on Ethereum) is 
required as in 7. However, she submits the claim transaction with an inclusion proof of 
the withdrawal to the (non-canonical) t1 bridge contract on Partner Rollup instead. The 
Partner Rollup bridge contract verifies the inclusion proof with respect to r as accepted 
by the Canonical Bridge on Ethereum (using Partner Rollup’s Ethereum read abilities, 
usually via Partner Rollup’s own L1 canonical bridge) and then releases the funds to 
Alice on Partner Rollup.

Note: The same Fast Confirmation Rule as above lets Partner Rollup sequencers 
read the new r from the Canonical Bridge significantly faster.

Bridge contracts
t1 leverages its contracts on Ethereum and rollups to accept deposits into t1 and allow users to 
withdraw funds from t1 back to their blockchain of choice.

Ethereum’s contract acts as the Canonical Bridge where t1 trie root updates are posted.  Their 
validity is ensured by verifying Sequencing Consensus, Execution Consensus, and the data 
availability commitment to a blob posted on Ethereum (DA). Therefore, this contract is the 
source of truth for t1 state. 

Withdrawals to Ethereum can be enabled immediately after a transaction updates this 
contract, by a further “claim” transaction carrying a Merkle proof, on L1 or Partner Rollup 
itself. Withdrawals to Partner Rollups require the local (non-canonical) t1 bridge contract to 
check the state of the Canonical Bridge on Ethereum before the funds can be released to the 
user on Partner Rollup. The state of the t1 Canonical Bridge can be relayed to Partner Rollup 
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via arbitrary message passing capabilities of Partner Rollup’s own bridge. This approach 
prevents attacks that could otherwise result in double-spend due to reorgs.

Sequencers
In t1, Sequencers sequence and broadcast partially-encrypted transactions, forming a 
consensus on a blind block order (“bundles”), which is then passed to Executors for 
execution. Most of the rollups nowadays utilize single-sequencer designs, compromising 
security for speed; also, usually both sequencing and execution are performed by a single 
entity, leading to little censorship resistance. We want to separate sequencing (broadly 
accessible) and execution (higher network and hardware requirements, including the 
requirement of being a TEE) to allow for fast, decentralized consensus, offering strong 
resistance to censorship and bribery, while minimizing MEV from transaction ordering.

t1’s long-term design employs Espresso Systems' HotShot Consensus, a BFT protocol 
adapted for PoS, enhancing decentralization. Sequencers, part of t1's AVS, use restaked stake 
with slashing conditions to maintain security and integrity in transaction sequencing.

Executors
TEE-enabled Executors oversee the current state of t1 by running transactions from 
Sequencer-ordered blind bundles and establishing consensus on the new state. They utilize 
t1VM, a TEE-optimized and interop-enriched version of Reth, which ensures full backwards 
compatibility with Ethereum while adding cross-chain-composability-specific capabilities 
such as reading a chain's contract method or requesting a write call to it. An Ethereum full 
node is maintained within the Executor for streamlined interaction with the canonical bridge, 
while follower nodes (clients) for other rollups run by the Executor allow for real-time state 
monitoring and interactions with them, without the delays usually required for fraud or zero-
knowledge proofs. t1VM includes unique capabilities powered by Reth’s ExEx, enabling 
Executors to interact with both Ethereum and other (partner) rollups from within t1's Solidity 
smart contracts.

Executors operate under a leader-based, instant-finality PoS Byzantine Fault Tolerant 
consensus system, representing the second category of t1's AVS, and they are liable to 
slashing to enforce system integrity.

All execution happens inside Intel TDX-based TEEs, which cryptographically isolate the 
runtime logic and protect it from tampering, even by the host OS. Before processing 
transactions or joining Execution Consensus, each Executor must successfully complete a 
hardware-backed Remote Attestation, as detailed in the Remote Attestation Design and 
Enforcement.

t1 Vision Litepaper 9

https://eprint.iacr.org/2024/1189.pdf
https://www.paradigm.xyz/2024/05/reth-exex
https://www.notion.so/9a2cc4d321ce4a08a4905aa809fb436e?pvs=25#127231194dc3807ea919c12b4e7efec1
https://www.notion.so/9a2cc4d321ce4a08a4905aa809fb436e?pvs=25#127231194dc3807ea919c12b4e7efec1
https://www.notion.so/9a2cc4d321ce4a08a4905aa809fb436e?pvs=25#127231194dc3807ea919c12b4e7efec1


Special opcodes for cross-chain composability
The t1VM, based on Reth and optimized to run within Intel TDX enclaves, introduces several 
custom precompiles and execution extensions (ExEx) to support seamless cross-chain 
programmability. These opcodes are enclave-executed thanks to co-located Partner Rollup 
follower nodes.

These special instructions allow t1 smart contracts to:

xchain.readState(uint64 chain, bytes calldata data)

Query the state of a remote Ethereum or Partner Rollup contract in near-time, using 
enclave-hosted follower nodes. Reads are cached and committed via proof-of-read trees 
in block headers.

xchain.sendTx(uint64 chain, bytes calldata data)

Submit transactions to Ethereum or Partner Rollup mempools from inside a t1VM 
contract, enabling best-effort multi-chain coordination.

While the transaction submission is initiated synchronously from within t1VM, its 
inclusion and execution on the target chain are asynchronous processes. Smart contracts 
must be designed to handle potential failure, delayed inclusion, or rollback by relying on 
callback patterns, event monitoring, and appropriate timeout handling.

xchain.sendTxAs(address user , uint64 chain, bytes calldata data)

Relay transactions to other chains on behalf of a user, enabling use cases like delegated 
execution, paymasters, or cross-chain proxy control.

xfeed.queryPrice(string feedId, uint64 timestamp )

Access a signed price feed snapshot (e.g., from a partner CEX or L1 oracle) as of a 
specific timestamp, as observed by the enclave. This enforces deterministic read 
behavior, allowing values to be committed into the proof-of-read trie and enabling 
reproducibility across replays. Suitable for use in collateral valuation, liquidation 
triggers, or TWAP rebalancing.

All read-based opcodes, such as xchain.readState and xfeed.queryPrice, are executed inside 
the TEE, and their outcomes are committed into a proof-of-read trie, which is included in the 
block header and committed to Ethereum. Remote reads are deterministically committed to 
Ethereum L1 via a proof-of-read trie, ensuring verifiability and auditability of all external 
dependencies in t1 state transitions.

In contrast, transaction submission opcodes, such as xchain.sendTx and xchain.sendTxAs, 
initiate asynchronous best-effort actions toward external chains. These are not committed to 
the proof-of-read trie. Instead, applications using these opcodes must be designed to handle 
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external success or failure events explicitly, through callback patterns, confirmation 
monitoring, or timeout strategies.

Further rollup node subnetworks
Additional subnetworks may appear in the broader t1 ecosystem where some TEE-enabled 
Executor-style nodes, probably running as an AVS, provide light-client-like “oracle” services 
to e.g. t1 Executors who wish to act upon the latest (low-latency) state in some other 
(possibly arcane/insecure) rollup/L2. These could come with an insurance fund or 
marketplace for reorgs and other rollbacks, e.g., caused by a technical issue, security council 
breach, etc. 

Such a subnetwork may or may not be operated by the same physical node operator and on 
the same hardware as a t1 Executor. t1 is being built in a modular way such as to facilitate 
tangential applications of this sort via a robust shared infrastructure layer. It is conceivable 
that different smaller subnetworks may emerge to account for the different, possibly fine-
granular security, latency, liveness, etc., requirements per Partner Rollup.

Mempool encryption
t1 has an encrypted mempool that is designed to eliminate ordering-related MEV. The system 
uses a rotating private key shared among t1 Executors that remains sealed within the TEE. As 
a result, transactions partially encrypted to the corresponding shared public key, which 
Sequencers order into partially encrypted bundles, can only be decrypted inside Executors, 
for execution, allowing the creation of the block with its new state. Once transactions are 
executed, their full plaintext content is made public, and anyone is able to reproduce the 
computed state.

Remote Attestation design and enforcement
A complete formal specification of the attestation pipeline can be found in this companion 
document: https://docs.t1protocol.com/concepts/resources#tee-architecture

t1 leverages Intel TDX-based Trusted Execution Environments (TEEs) at first, to ensure that 
state transitions are executed within secure, hardware-isolated environments. However, 
enclave security alone is insufficient without a mechanism to prove—publicly and succinctly
—that these nodes are indeed running unmodified, audited software.

To that end, t1 runs the full DCAP quote-verification logic inside a Risc0 zkVM and 
compresses the trace into a Groth16 proof ≈ 200 bytes. A single proof is emitted only when a 
validator (i) first joins, (ii) upgrades to a new image hash, or (iii) refreshes its TCB after Intel 
raises the minimum SVN. NodeRegistry  verifies that proof once, stores the validator’s pubkey 
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+ measurement as active, and thereafter needs only an ordinary ECDSA signature on each 
block.

Binding attestation to protocol state and mempool key
Each attestation report includes multiple fields:

report_data  — A 64-byte custom field set by the enclave at launch, it commits to

validatorPubKey  – the enclave’s long-lived signing key;

currentProtoVersion  – governance-set tag bumped on every allowed-measurement 
change;

HashPubHPKE  – the hash of the epoch mempool-encryption public key;

nonce  – 256-bit challenge issued by NodeRegistry  to prevent replay.

RTMR3  — A cryptographic measurement (SHA-384) of the enclave’s runtime 
configuration, such as the Docker Compose manifest, root filesystem hash, and other 
application-specific initialization data.

imageId  — A unique identifier for the expected software binary or container image (e.g., 
a hash of the enclave codebase).

The zkVM verifies that the Quote’s signature chain is intact, the TCB SVN  ≥ minTCB , 
REPORT_DATA  matches the supplied nonce and protocol parameters, and that the TD 

measurement appears in the on-chain allow-list Merkle root. The proof’s public outputs 
( validatorPubKey, measurementHash, HashPubHPKE ) are recorded in NodeRegistry ; any later block 
signed by a key absent from this active set is rejected.

RA proof compression with ZKP
Once the TD Quote is generated by the Executor enclave, it is passed into a dedicated zero-
knowledge virtual machine (zkVM), such as RISC Zero, which serves as an off-chain 
attestation verifier. The zkVM performs a full cryptographic validation of the TDX quote, 
including all relevant fields, and outputs a succinct proof that can be efficiently verified on-
chain.

The zkVM verifier performs the following steps:

1. Quote Parsing

It deserializes the TD Quote structure and extracts key fields, including:

report_data  – the verifier-defined 64-byte binding value,

RTMR3  – the measured runtime hash,
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imageId  – the identity of the runtime image,

TDX report metadata and signature.

2. Signature and Certificate Validation

It validates the Intel DCAP certificate chain, confirming the quote was generated by a 
genuine Intel TDX-capable CPU using a valid Provisioning Certification Key (PCK) 
signed by Intel. This ensures the enclave is rooted in hardware trust.

3. Attestation Field Checking

The zkVM enforces that:

report_data  matches the expected constants

RTMR3  equals the known good runtime measurement corresponding to the declared 
imageId ,

The claimed imageId  is part of the protocol's published set of approved executor 
images.

4. Public Output Commitment

After verifying the quote and all integrity constraints, the zkVM outputs the attested 
values— imageId , RTMR3 , report_data , and an attestation passed flag—as public data in 
the proof’s journal. These values are included as public inputs to the zkSNARK, 
allowing any on-chain verifier contract to enforce attestation rules based on them.

5. Proof Generation

The zkVM emits a succinct zero-knowledge proof (e.g., a STARK or SNARK) that 
confirms:

“A valid TDX quote signed by Intel proves the enclave with imageId  ran a trusted 
runtime matching RTMR3 , and correctly reported report_data  = X.”

This proof is submitted alongside:

Node registration requests, i.e., in NodeRegistry,

Claims of protocol version compliance, e.g, in smart contract upgrades.
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ℹ️ On-chain verifier contracts, such as the Canonical Bridge or Node Registry, do not 
inspect the raw quote but instead validate the zkSNARK. These contracts check 
that:

The zk-proof is cryptographically valid and corresponds to the expected 
zkVM circuit

The attested report_data  matches the expected constants

The RTMR3  is one of the currently whitelisted runtime hashes for the declared 
imageId

The imageId  is recognized and not revoked

The node is not already slashed or removed from the active set

By relying on zk-compressed attestation, t1 achieves a trust-minimized, gas-
efficient enforcement of enclave integrity, with all sensitive quote validation 
logic occurring off-chain in a reproducible zkVM program.

Enclave-keyed access and upgrade safety
To decrypt and process encrypted user transactions, Execution AVS nodes require access to a 
shared mempool decryption key. This key is sealed to the enclave and is only provisioned to 
nodes that have passed remote attestation, verified via zk-compressed TD Quotes.

The attestation proof must confirm that the enclave:

Runs a permitted executor imageId ,

Measures the expected runtime configuration ( RTMR3 ),

Reports a fresh nonce  bound into report_data ,

Declares validatorPubKey  and HashPubHPKE  that match the on-chain epoch constants,

Reveals a CPU/TDX SVN  not lower than minTCB ,

Embeds the current protocol tag currentProtoVersion  in report_data .

Only then can the node receive the decryption key from existing peers in the network. Key 
transfer is performed through an in-enclave, mutually-attested ECDH handshake:

Both TDs verify that the counterparty’s Quote hash and validatorPubKey  are marked as 
active in NodeRegistry .

They derive a session key from ECDH entirely inside their respective enclaves.
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The live node re-wraps the sealed root_secret  under that session key and transmits it; the 
newcomer unseals it and deterministically derives its HPKE keys.

Unverified or inactive nodes cannot complete this handshake and therefore never obtain 
the decryption key.

Whenever the protocol is upgraded—such as a new Canonical Bridge version, runtime logic 
revision, or dependency patch—t1 Security Council simultaneously (i) bumps 
currentProtoVersion , (ii) publishes an updated Merkle root of allowedMeasurements , (iii) may 

raise minTCB , and (iv) schedules an epoch-wide HPKE key rotation by emitting 
HashPubHPKE′ . These values define the next valid executor configuration.

Execution AVS validators enforce this policy by accepting only nodes that submit zk-
compressed attestation proofs verifying these exact values. Executors must re-attest using the 
new configuration in order to regain access to the sealed mempool key and resume consensus 
participation. Until they do, the attested-ECDH channel refuses to deliver root_secret , 
instantly disabling their ability to decrypt new transactions or sign blocks. This mechanism 
ensures that outdated or forked nodes are cryptographically excluded from transaction 
execution and state transition, providing strong upgrade enforcement at both the enclave and 
consensus levels.

By binding sealed key access to a multi-factor enclave attestation—checked off-chain in a 
zkVM and enforced on-chain by verifier contracts—t1 achieves robust upgrade safety and 
execution integrity without relying on manual trust or off-chain coordination.

Data availability
In addition to the new trie roots and Sequencing Consensus and Execution Consensus proofs 
going to L1, the full (yet compressed) transactions (inputs to the state transition function) are 
posted on Ethereum as blobs by the Executors, and their availability is checked by the 
Canonical Bridge when validating a new proposed trie root tuple. This enables anyone to 
recreate the state of t1 (but for what happened since the last Ethereum block, so on average 
for a maximum of 12 seconds) from trusting Ethereum and Ethereum alone. This also 
supports forced transaction inclusion.

Forced tx inclusion (incl. exit)
If the t1 rollup is down, any user will be able to submit their “self-sequenced” t1 transactions 
(that may include, e.g., exiting from a DeFi position and then withdrawing to Ethereum) to 
the Canonical Bridge contract on Ethereum.
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Infrastructure partners

Automata DCAP
Automata provides an open-source implementation of Intel’s DCAP remote attestation 
framework, enabling trusted enclave verification without relying on Intel’s centralized 
services. t1 leverages Automata’s DCAP tools inside Executor nodes to generate and validate 
TD Quotes, forming the basis for zk-compressed Remote Attestation proofs. This ensures that 
only nodes running verified enclave software participate in Execution Consensus, anchoring 
hardware trust into Ethereum via zk verification. Automata’s work allows t1 to decentralize 
TEE validation, maintaining security even as the network grows permissionless.

EigenLayer AVS
EigenLayer’s Autonomous Verifiable Services (AVS) system allows new protocols to inherit 
Ethereum’s economic security through re-staking. Stakers from Ethereum can re-stake their 
assets, like ETH, into an AVS, which secures another service, beyond Ethereum, like 
Sequencer and Execution Consensus for t1. This model gives new chains like t1 the ability to 
bootstrap security without building independent validator sets (leading to inefficiently locked-
up capital). EigenLayer includes strict slashing mechanisms to align validator incentives 
across networks, ensuring that re-staked validators are punished for misbehavior, maintaining 
strong decentralized security.

Espresso Hotshot Consensus
Espresso’s Hotshot consensus enables finalizing block contents with low latency by utilizing 
a leader-based protocol that minimizes coordination overhead. HotShot employs a highly 
decentralized set of nodes, where blocks are proposed by a leader and validated through 
multiple rounds of voting to ensure consensus. The protocol is designed for scalability and 
achieving finality within a second, even under high network load conditions, all while 
maintaining decentralization and security by involving many participating nodes in the 
consensus process.

RFQ bridges
As t1 targets to solve cross-chain composability and UX challenges, it must provide a world-
class experience for users wanting to withdraw tokens from t1 to partner chains. The t1 bridge 
contract on the destination chain first facilitates such a withdrawal. However, there’s no 
guarantee that the t1 contract has enough assets for the withdrawal. If it doesn't, t1 will tap 
into RFQ bridge protocols, quickly moving funds between the different t1 bridge contracts in 
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the background, all to ensure users can seamlessly withdraw tokens to their address on any 
destination chain.

Security: On Reorgs
t1 is building a real-time proving rollup that enables near-instant cross-chain settlement 
without waiting for long confirmation delays. This significantly enhances user experience and 
application composability across Ethereum and partner rollups. However, this design 
introduces finality risk — the chance that a transaction could be rendered void due to a reorg 
in one of the chains involved. To address this, t1 employs multiple tactics outlined below.

Firstly, t1 generally reorgs together with the L1 (but cf. the impact of FCR under “Flow” 
above). When this happens, the user experience on t1 is identical to the user experience on the 
reorged L1. Basically, the transaction never takes place. It’s also worth noting, reorgs on 
Ethereum are rare: Since the Merge to Proof-of-Stake, ~0.059% of Ethereum blocks have 
been reorged (almost always one-block deep, with only 4 instances of 2-block reorgs). 
Moreover, rollups that use centralized sequencers have even lower reorg risk.

The main practical reorg risk arises when the source chain (from which a deposit was made to 
t1) reorgs after relevant funds were already withdrawn out of t1 to the third chain. In this rare 
scenario, t1 would be out of funds. There are some approaches we are considering to alleviate 
this problem: 

Inclusion preconfirmations: An inclusion preconfirmation is an optimistic crypto-
economic guarantee that the deposit transaction will be included in the source chain. 
Since inclusion pre-confirmations are independent of both ordering and execution 
success, they are rather cheap. An inclusion pre-confirmation would guarantee that even 
in the event of a reorg on the source chain (e.g. a late block on Ethereum), a t1-depositing 
transaction will eventually make it to the source chain. However, its success is not 
guaranteed as a malicious user could e.g. have their funds spent before the block is 
created for which the preconf had been given. This would result in the t1-depositing tx to 
be correctly included, albeit as a reverting tx.

Execution-success preconfirmations: These optimistic crypto-economic guarantees also 
bind the sequencing entity to ensuring that a given tx succeeds (i.e., not revert), not just 
that it be included. They are expected to be more expensive, but would allow for fast 
deposits secured up to the crypto-economic threshold of the slashable stake of the 
sequencing entity.

Insurance pools: t1 can introduce an insurance pool for fast deposit-and-withdrawals and 
keep track of which portion of all deposits is final and which is still prone to reorgs, thus 
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also capping the maximum loss. This is effectively the purpose that solvers serve today in
intent-based bridging and cross-chain swaps. Such instant deposit-and-withdrawal 
actions can require a certain premium fee that would go to an insurance pool so that 
potential source-chain-reorg-related losses can be covered by the insurance pool. In the 
absence of preconfirmations, the size of instant deposit and withdrawals would be limited 
by the size of the insurance pool.

Reorgs are a risk that needs to be accounted for in any on-chain architecture; although they 
are rare, they can happen. t1’s approach to reorgs is risk-based and strikes a balance between 
enabling a good user experience, providing the right functionality, and accounting for the 
worst-case scenario.

Native t1 applications
Applications built natively on t1 leverage real-time proving and are designed to provide a 
better user experience with seamless cross-chain coordination.  We’re still early in uncovering 
all of the possibilities real-time proving enables, but have identified a few primitives that are 
uniquely enabled by t1: 

Cross-chain vaults, non-custodial cross-chain yield optimization that automates yield 
discovery and rebalancing across rollups. Using t1’s real-time proving (RTP) 
interoperability infrastructure, funds move between lending protocols and yield sources.

Cross-chain loans enable users to deposit collateral into lending contracts on any partner 
rollup, while market makers borrow against these deposits through t1’s cross-chain 
collateral accounts to fill intents. Loans can be settled and returned to the origin chain 
within one minute, with a share of bridging fees passed back to depositors as yield. This 
design reduces capital requirements for borrowers while delivering competitive, real-
demand-driven returns to lenders.

Same-block-deposit-trade-withdrawal (aka Same-Block-DTW) dApp flows: A user on 
Ethereum is able to use t1 to e.g. trade without even realizing they’re leaving Ethereum 
(no wallet network switching etc.). Their original deposit transaction on L1 into t1 may 
contain e.g. trade intent metadata that gets interpreted by t1 out-of-band and submitted to 
a marketplace of solvers, resulting in one of them placing a new tx on t1 which is 
ultimately leading to a withdrawal tx back to the L1—which may be sealed into the very 
same L1 block as the original deposit tx and succeed or fail L1-atomically.

These use-cases build TVL on t1 and empower the network to become a programmable 
liquidity layer that any connected chain can tap into. Thanks to RTP, t1 eliminates the 

t1 Vision Litepaper 18



fragmentation of liquidity across isolated ecosystems and enables applications to operate as if 
liquidity were unified.

t1 is also designed to enhance the functionality of existing applications. For Ethereum L1 
applications, t1 offers an execution environment with significantly lower costs while 
maintaining composability with Ethereum, enabling applications to scale. Appchains and 
rollups can leverage t1’s infrastructure to access cross-chain liquidity without the need for 
custom integrations or shared sequencer agreements. By being as a permissionless interop 
layer, t1 ultimately allows partner applications to improve capital efficiency and offer better 
UX.

Conclusion
Today, applications need to deploy on multiple rollups to meet user demand. In the future, 
applications built on t1 will be able to serve users across multiple rollups by deploying on t1 
alone.

Glossary
See https://docs.t1protocol.com/concepts/glossary.
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