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Introduction

Abstract

t1 is the first interop rollup designed to fix fragmentation and composability challenges in
scaling Ethereum. By leveraging AVS-secured Trusted Execution Environments (TEE), t1
introduces Real-Time Proofs (RTP) that prove the integrity of t1 execution to Ethereum in
less time than it takes to create a block on Ethereum (12 seconds). By running third-party
Partner Rollup nodes in its TEE node infrastructure, t1 also aggregates and proves their
needed state to Ethereum in real-time. As a result, t1 enables instant settlement between any

combination of Partner Rollups and Ethereum L1, providing fast composability.

Execution in t1 is cryptographically verified via zk-compressed TEE Remote Attestation,
ensuring that all involved state transitions are provably correct, tamper-proof, and bound to
the current protocol version. In addition to real-time proving, t1 supports general-purpose
smart contract programmability in its blockspace, and enables writes to Partner Rollups. This
architecture offers a foundation for building new and enhancing existing cross-chain
applications—such as yield aggregators, lending protocols, and decentralized exchanges—
that require fast, programmable interoperability without reliance on third-party bridges or

message-passing systems.

t1’s mission is to unify Ethereum and its rollup ecosystem by creating a real-time proof-

powered liquidity layer that enables the best user experience on cross-chain applications.
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Problem

The current rollup-centric scaling strategy has delivered lower fees and higher throughput, at
the cost of fragmentation. Liquidity and user activity are now spread across hundreds of

rollups, forcing developers to bring their applications multi-chain—by leveraging third-party
bridges and messaging protocols. Despite widespread efforts to improve interoperability, the

current landscape remains siloed:

e Most L2 interoperability efforts focus on specific rollup stacks rather than the entire
ecosystem. These efforts reduce the number of siloes yet solidify existing siloes rather

than eliminating them.
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¢ Interoperability protocols enable message passing and proof generation, but forego
the benefits of programmability. As a result, each chain remains a siloed execution
environment. Users must take separate actions on each chain, adding friction, cost, and

fragmentation.

¢ Real-Time Proving in zero-knowledge, especially for L2-level compute throughput, is
still far out, both because of proving times, but also due to the complexity and bug

potentials in zkVMs.

As aresult, no existing application can offer a seamless, cross-chain user experience today
without the complexities and risks of introducing third-party bridges or messaging protocols.
Without a fundamental shift in how interoperability is achieved, Ethereum risks developing

into a fragmented network where composability remains trapped within silos.

Solution

t1 introduces a Trusted Execution Environment (TEE) Real-Time Proving (RTP) rollup to

solve fragmentation in the Ethereum ecosystem today.

Real-Time Proving

RTP allows t1 to prove its state to Ethereum L1 on every L1 block. This means:

e Users can enjoy the low cost and high speed of rollups while their assets may effectively
be viewed as remaining on Ethereum: Funds on t1 can be withdrawn to an L1 account
within a single block, making interacting with t1 feel similar to interacting with a smart

contract on L.1.

e Applications on Ethereum and on Partner Rollups can quickly access t1 state (incl.
liquidity) because it can be proven to Ethereum on every L1 block.

e Applications on t1 can verify state changes in Ethereum and Partner Rollups and create

cross-chain proofs. This is achieved by running Partner Rollup follower nodes within t1.

Programmability

Programmability enables t1 to do more than just Real-Time Proving. Smart contracts create a
programmable hub for liquidity and cross-chain interactions. Programmability enables
components currently deployed off-chain, such as relayer and solver networks for ERC-7683
protocols, to be brought on-chain. Programmability also enables t1 to become a cross-chain
liquidity hub in addition to just being a bridge or a proving system that merely passes proofs
across blockchains. This means we can now build collateral accounts, lending-borrowing

primitives, and orderbooks—but in the cross-chain paradigm.
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Furthermore, t1’s architecture is designed to allow for cross-chain application experiences
without needing buy-in from any rollup/L.2 or application. In that sense, t1 is the much-

needed permissionless cross-chain application platform.

What are TEESs?

Trusted Execution Environments (TEEs) are specialized hardware-based environments that
isolate sensitive computations and data from the rest of the system, ensuring that data is

processed correctly and (optionally) privately.

In particular, TEEs provide verifiable computation guarantees through a process called
“Remote Attestation” which proves to external verifying parties that the TEE in question is
running a specific, unmodified piece of software (bytecode), without any tampering. Verifiers
can then use this attestation and combine it with an understanding of what the bytecode is

doing in order to confirm that a TEE’s output is indeed trustworthy.

Optionally, TEEs can preserve privacy by keeping sensitive data and execution logic

concealed from the broader system and external observers.

How do they help?

Two key requirements for achieving full interop unification of Ethereum and the rollup
ecosystem, without reorg risks and asynchrony, would be shared sequencing across all chains,

and real-time proving (RTP). The former does not seem realistic at this point.

At t1, we are working on RTP by employing TEEs. However, TEEs also help with cross-
chain composability by enabling follower nodes in t1 to read data from and write data to
Partner Rollups. This setup allows t1 to aggregate the state of Ethereum and Partner Rollups
without requiring shared sequencing (or any opt-in), with a best-effort approach where the

asynchrony is not bounded in theory, but low in practice.

And again, RTP enables t1 state (which is dependent on Partner Rollups’ state implicitly) to
have an asynchrony window with Ethereum that is as low as a single-block (12 seconds)—a
substantial improvement over the current seven-day window in Optimistic Rollups and hours-

long window in Zero-Knowledge Rollups.

In addition to RTP and cross-chain communication, TEEs allow t1 to offer a partially-
encrypted mempool. Such a mempool prevents adversarial reordering, such as sandwich
attacks, where an attacker observes a pending user transaction and places trades before (front-
running) and after (back-running) it, profiting at the expense of regular users. Sandwich

attacks cost Ethereum users over $100mn every year [1]. An encrypted mempool or

ephemerally-private blockspace may also facilitate use cases like sealed-bid auctions and

information-incomplete games.
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Architecture

Protocol design

t1 is an EVM-based rollup that generates real-time proofs to provide cross-chain application
infrastructure. In its currently planned long-term form, t1 combines the verifiable
computation guarantees of Trusted Execution Environments (TEE) with additional defense
layers such as economic security (AVS) and bespoke zero-knowledge proofs (ZKP) to enable

fast and secure proof generation. t1 has two network stakeholders:

e Sequencers are a highly decentralized set of nodes tasked with blindly finalizing the
ordering of partially-encrypted transactions in a t1 block. Since Sequencers only order
transactions rather than executing them (meaning lower hardware and network
requirements, in particular no TEE requirement), t1 can achieve high decentralization and

censorship resistance. Sequencers provide proofs of Sequencing Consensus. More: .

e Executors are a network of TEE-enabled nodes tasked with executing state changes given
the ordered sequences of transaction bundles determined by the Sequencers. Executors

provide proofs of Execution Consensus. More: .
t1 produces blocks every second. Each block involves two sequential steps:

¢ Tx data broadcast and bundle finalization by Sequencers (incl. Sequencing Consensus
proof).

¢ Execution into a block and agreement about the new state, reached by TEE-enabled

Executors (incl. Execution Consensus proof).

Both Sequencing Consensus and Execution Consensus are required to update the state of t1
(aka trie root tuple) on Ethereum. Only then will t1 bridge contracts on Ethereum and Partner

Rollups be able to be “convinced” to, e.g., release their funds to withdrawing users.

As t1’s interim form gradually becomes a fully permissionless network, it’s essential to
implement mitigations against potential TEE exploits and develop defense-in-depth
strategies. To this end, t1 leverages two sets of EigenLayer Autonomous Verifiable Services
(AVS) validators to derive its crypto-economic security from restaked assets, providing a

programmatic insurance budget on top of TEE guarantees.

However, an attacker controlling more than the crypto-economic security of the Execution
AVS stake and also the necessary TEEs (that they managed to compromise) could produce an
integrity proof for a fraudulent new state of t1. For this attack to be economically viable, the
value-at-risk would need to be higher than the slashable Execution AVS stake. To ensure that

t1’s economic activity is not bound by this security budget, we introduce a bespoke ZKP
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mechanism as an additional defense layer: t1 uses incentivized periodic ZKP to create
checkpoints. When cumulative value-at-risk since the last checkpoint is about to exceed the
crypto-economic security budget, the Canonical Bridge will require the provision of an on-
demand ZKP before it accepts such a new t1 state—halting finalization until then. However,
with adequate t1 gas price policies incentivizing proactive checkpoint creation before any
finalization halting is needed, we don’t expect this situation to ever happen under normal

conditions, achieving a good tradeoff between finalization latency and hard-times resilience.

Note: ZKP generation will likely be outsourced to a network that can meet the latency and

cost requirements.

Architecture diagram
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Flow

1. A user, Alice, deposits funds to a t1 bridge contract on Ethereum or on a Partner Rollup.
Once the deposit is confirmed on the source chain, it gets processed by t1, and Alice gets

her funds credited towards her aggregate t1 balance.

e Note: Recent progress on Fast Confirmation Rule (ECR) (aka Fast Synchronous
Finality / FSF) directly contributes to t1’s ability to interpret both Ethereum’s state

and also “secure” Partner Rollups’ states as sufficiently finalized significantly faster
than under the standard finalized-tag (~16 minutes) assumption—drastically
lessening the risk of t1 needing to reorg together with an L1 reorg (or only being
able to credit user deposit/inbox transactions with a finalized-tag-level delay).
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e This is true for a Partner Rollup if it is parameterized to operate in the most secure
mode of t1 only deeming such Partner Rollup states as final whose DA has been
posted to Ethereum and is viewed as finalized there. Less secure and significantly
faster modes for Partner Rollups are possible which introduce the trust assumption
in the Partner Rollup sequencer and depend on its p2p/gossip network layer. Hybrid
modes with capped value-in-flight are conceivable, too.

. Alice changes her wallet’s network to t1, creates a t1-native transaction (with some fields

encrypted to the shared rotating TEE pubkey), uses her wallet to sign it, and submits it to
the network (i.e. the t1 mempool); this may or may not be a specially-treated withdrawal

transaction (to Ethereum or a Partner Rollup).

. A tl Sequencer receives and gossips such a partially-blind transaction to other

Sequencers in the t1 Sequencing AVS network.

After collecting transactions for one t1 slot (currently set to one second), the slot-leading
Sequencer proposes an ordering (a blind non-executed bundle). The rest of the
Sequencers vote on it using Espresso HotShot to form Sequencing Consensus. This
bundle and a proof of Sequencing Consensus is then passed on to the Execution AVS

network.

. t1 Executors validate the proof of Sequencing Consensus, decrypt the encrypted parts of

the received bundle (if needed and due) using their TEE-derived shared rotating private
key, and execute its now fully plaintext ordered transactions against the current state of
the t1 blockchain. The slot-leading Executor proposes a new trie root tuple r of state trie
root, withdrawals trie root, and proof-of-read trie root—and the rest of the Executors vote

on such new trie tuple r to form Execution Consensus.

e Note: Executors use follower nodes also running in TEEs to read from and write to

Partner Rollups (whenever required by a t1 tx).

The Execution AVS posts t1’s new trie roots r and all the corresponding consensus proofs
to the Ethereum t1 Canonical Bridge contract and the full compressed transactions to
Ethereum blob DA.

¢ In addition, t1 progressively incentivizes the generation and posting of periodic
ZKPs to the Canonical Bridge on Ethereum to create ZKP checkpoints, resetting the
value-at-risk counters and also speeding up the potential on-demand ZKP creation
when required. t1 dynamic gas pricing considers how much AVS security budget is

still available to reach an equilibrium.

¢ In the rare event that new t1 transactions’ (as per all new trie root tuples) cumulative

value since the last ZKP checkpoint, despite the mechanisms above, would exceed
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the crypto-economic security budget provided by Execution AVS, also an on-demand
ZKP is required by the Canonical Bridge, pausing finalization until then; this would

increase the withdrawal delay to hours under such extreme conditions.

7. t1’s Canonical Bridge contract on Ethereum checks the new submitted t1 trie root tuple r,
Sequencing Consensus, Execution Consensus, and transaction data availability for
consistency. If successful, such r is accepted. This then generally facilitates withdrawals

from t1 to Ethereum with a single-Ethereum-block delay only (i.e. 6 seconds on average).

e Suppose Alice had desired to withdraw funds in step 2. She may now submit to the
Canonical Bridge an Ethereum claim transaction with an inclusion proof of her
withdrawal transaction in t1 (as contained within the withdrawal trie committed to in

r). The contract then releases the funds to Alice on Ethereum.

8. If Alice wishes to withdraw funds to her account on a Partner Rollup rather than on
Ethereum, the same trie root tuple r update in the Canonical Bridge (i.e., on Ethereum) is
required as in 7. However, she submits the claim transaction with an inclusion proof of
the withdrawal to the (non-canonical) t1 bridge contract on Partner Rollup instead. The
Partner Rollup bridge contract verifies the inclusion proof with respect to r as accepted
by the Canonical Bridge on Ethereum (using Partner Rollup’s Ethereum read abilities,
usually via Partner Rollup’s own L1 canonical bridge) and then releases the funds to

Alice on Partner Rollup.

e Note: The same Fast Confirmation Rule as above lets Partner Rollup sequencers

read the new r from the Canonical Bridge significantly faster.

Bridge contracts

t1 leverages its contracts on Ethereum and rollups to accept deposits into t1 and allow users to

withdraw funds from t1 back to their blockchain of choice.

Ethereum’s contract acts as the Canonical Bridge where t1 trie root updates are posted. Their
validity is ensured by verifying Sequencing Consensus, Execution Consensus, and the data
availability commitment to a blob posted on Ethereum (DA). Therefore, this contract is the

source of truth for t1 state.

Withdrawals to Ethereum can be enabled immediately after a transaction updates this
contract, by a further “claim” transaction carrying a Merkle proof, on L1 or Partner Rollup
itself. Withdrawals to Partner Rollups require the local (non-canonical) t1 bridge contract to
check the state of the Canonical Bridge on Ethereum before the funds can be released to the

user on Partner Rollup. The state of the t1 Canonical Bridge can be relayed to Partner Rollup
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via arbitrary message passing capabilities of Partner Rollup’s own bridge. This approach

prevents attacks that could otherwise result in double-spend due to reorgs.

Sequencers

In t1, Sequencers sequence and broadcast partially-encrypted transactions, forming a
consensus on a blind block order (“bundles”), which is then passed to Executors for
execution. Most of the rollups nowadays utilize single-sequencer designs, compromising
security for speed; also, usually both sequencing and execution are performed by a single
entity, leading to little censorship resistance. We want to separate sequencing (broadly
accessible) and execution (higher network and hardware requirements, including the
requirement of being a TEE) to allow for fast, decentralized consensus, offering strong

resistance to censorship and bribery, while minimizing MEV from transaction ordering.

t1’s long-term design employs Espresso Systems' HotShot Consensus, a BFT protocol

adapted for PoS, enhancing decentralization. Sequencers, part of t1's AVS, use restaked stake

with slashing conditions to maintain security and integrity in transaction sequencing.

Executors

TEE-enabled Executors oversee the current state of t1 by running transactions from
Sequencer-ordered blind bundles and establishing consensus on the new state. They utilize
t1VM, a TEE-optimized and interop-enriched version of Reth, which ensures full backwards
compatibility with Ethereum while adding cross-chain-composability-specific capabilities
such as reading a chain's contract method or requesting a write call to it. An Ethereum full
node is maintained within the Executor for streamlined interaction with the canonical bridge,
while follower nodes (clients) for other rollups run by the Executor allow for real-time state
monitoring and interactions with them, without the delays usually required for fraud or zero-
knowledge proofs. t1VM includes unique capabilities powered by Reth’s ExEx, enabling
Executors to interact with both Ethereum and other (partner) rollups from within t1's Solidity

smart contracts.

Executors operate under a leader-based, instant-finality PoS Byzantine Fault Tolerant
consensus system, representing the second category of t1's AVS, and they are liable to

slashing to enforce system integrity.

All execution happens inside Intel TDX-based TEEs, which cryptographically isolate the
runtime logic and protect it from tampering, even by the host OS. Before processing
transactions or joining Execution Consensus, each Executor must successfully complete a

hardware-backed Remote Attestation, as detailed in the Remote Attestation Design and

Enforcement.
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Special opcodes for cross-chain composability

The t1VM, based on Reth and optimized to run within Intel TDX enclaves, introduces several
custom precompiles and execution extensions (ExEx) to support seamless cross-chain
programmability. These opcodes are enclave-executed thanks to co-located Partner Rollup

follower nodes.
These special instructions allow t1 smart contracts to:

® xchain.readState(uint64 chain, bytes calldata data)

Query the state of a remote Ethereum or Partner Rollup contract in near-time, using
enclave-hosted follower nodes. Reads are cached and committed via proof-of-read trees

in block headers.

e xchain.sendTx(uint64 chain, bytes calldata data)

Submit transactions to Ethereum or Partner Rollup mempools from inside a t1VM

contract, enabling best-effort multi-chain coordination.

While the transaction submission is initiated synchronously from within t1VM, its
inclusion and execution on the target chain are asynchronous processes. Smart contracts
must be designed to handle potential failure, delayed inclusion, or rollback by relying on

callback patterns, event monitoring, and appropriate timeout handling.

® xchain.sendTxAs(address user , uint64 chain, bytes calldata data)

Relay transactions to other chains on behalf of a user, enabling use cases like delegated

execution, paymasters, or cross-chain proxy control.

o xfeed.queryPrice(string feedld, uint64 timestamp )

Access a signed price feed snapshot (e.g., from a partner CEX or L1 oracle) as of a
specific timestamp, as observed by the enclave. This enforces deterministic read
behavior, allowing values to be committed into the proof-of-read trie and enabling
reproducibility across replays. Suitable for use in collateral valuation, liquidation
triggers, or TWAP rebalancing.

All read-based opcodes, such as xchain.readState and xfeed.queryPrice, are executed inside
the TEE, and their outcomes are committed into a proof-of-read trie, which is included in the
block header and committed to Ethereum. Remote reads are deterministically committed to
Ethereum L1 via a proof-of-read trie, ensuring verifiability and auditability of all external

dependencies in t1 state transitions.

In contrast, transaction submission opcodes, such as xchain.sendTx and xchain.sendTxAs,
initiate asynchronous best-effort actions toward external chains. These are not committed to

the proof-of-read trie. Instead, applications using these opcodes must be designed to handle
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external success or failure events explicitly, through callback patterns, confirmation

monitoring, or timeout strategies.

Further rollup node subnetworks

Additional subnetworks may appear in the broader t1 ecosystem where some TEE-enabled
Executor-style nodes, probably running as an AVS, provide light-client-like “oracle” services
to e.g. t1 Executors who wish to act upon the latest (low-latency) state in some other
(possibly arcane/insecure) rollup/L2. These could come with an insurance fund or
marketplace for reorgs and other rollbacks, e.g., caused by a technical issue, security council

breach, etc.

Such a subnetwork may or may not be operated by the same physical node operator and on
the same hardware as a t1 Executor. t1 is being built in a modular way such as to facilitate

tangential applications of this sort via a robust shared infrastructure layer. It is conceivable
that different smaller subnetworks may emerge to account for the different, possibly fine-

granular security, latency, liveness, etc., requirements per Partner Rollup.

Mempool encryption

t1 has an encrypted mempool that is designed to eliminate ordering-related MEV. The system
uses a rotating private key shared among t1 Executors that remains sealed within the TEE. As
a result, transactions partially encrypted to the corresponding shared public key, which
Sequencers order into partially encrypted bundles, can only be decrypted inside Executors,
for execution, allowing the creation of the block with its new state. Once transactions are
executed, their full plaintext content is made public, and anyone is able to reproduce the

computed state.

Remote Attestation design and enforcement

A complete formal specification of the attestation pipeline can be found in this companion

document: https://docs.tlprotocol.com/concepts/resources#tee-architecture

t1 leverages Intel TDX-based Trusted Execution Environments (TEESs) at first, to ensure that
state transitions are executed within secure, hardware-isolated environments. However,
enclave security alone is insufficient without a mechanism to prove—publicly and succinctly

—that these nodes are indeed running unmodified, audited software.

To that end, t1 runs the full DCAP quote-verification logic inside a RiscO zkVM and
compresses the trace into a Groth16 proof ~ 200 bytes. A single proof is emitted only when a
validator (i) first joins, (ii) upgrades to a new image hash, or (iii) refreshes its TCB after Intel

raises the minimum SVN. Noderegistry verifies that proof once, stores the validator’s pubkey
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+ measurement as active, and thereafter needs only an ordinary ECDSA signature on each
block.

Binding attestation to protocol state and mempool key
Each attestation report includes multiple fields:
e report_data — A 64-byte custom field set by the enclave at launch, it commits to
o validatorPubkey — the enclave’s long-lived signing key;

o currentProtoVersion — governance-set tag bumped on every allowed-measurement

change;
© HashPubHPKE — the hash of the epoch mempool-encryption public key;
o nonce — 256-bit challenge issued by NodeRregistry to prevent replay.

e RTMR3 — A cryptographic measurement (SHA-384) of the enclave’s runtime
configuration, such as the Docker Compose manifest, root filesystem hash, and other

application-specific initialization data.

e imageld — A unique identifier for the expected software binary or container image (e.g.,
a hash of the enclave codebase).

The zkVM verifies that the Quote’s signature chain is intact, the TcB svN > minTCB,
REPORT_DATA matches the supplied nonce and protocol parameters, and that the TD

measurement appears in the on-chain allow-list Merkle root. The proof’s public outputs

( validatorPubKey, measurementHash, HashPubHPKE ) are recorded in NodeRegistry ; any later block

signed by a key absent from this active set is rejected.

RA proof compression with ZKP

Once the TD Quote is generated by the Executor enclave, it is passed into a dedicated zero-
knowledge virtual machine (zkVM), such as RISC Zero, which serves as an off-chain
attestation verifier. The zkVM performs a full cryptographic validation of the TDX quote,
including all relevant fields, and outputs a succinct proof that can be efficiently verified on-
chain.

The zkVM verifier performs the following steps:
1. Quote Parsing
It deserializes the TD Quote structure and extracts key fields, including:
e report_data — the verifier-defined 64-byte binding value,

e RTMR3 — the measured runtime hash,
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e imageld — the identity of the runtime image,
e TDX report metadata and signature.

2. Signature and Certificate Validation

It validates the Intel DCAP certificate chain, confirming the quote was generated by a
genuine Intel TDX-capable CPU using a valid Provisioning Certification Key (PCK)

signed by Intel. This ensures the enclave is rooted in hardware trust.

3. Attestation Field Checking

The zkVM enforces that:
e report_data matches the expected constants

e RTMR3 equals the known good runtime measurement corresponding to the declared

imageld ,

e The claimed imageld is part of the protocol's published set of approved executor

images.
4. Public Output Commitment

After verifying the quote and all integrity constraints, the zkVM outputs the attested
values— imageld , RTMR3, report_data , and an attestation passed flag—as public data in
the proof’s journal. These values are included as public inputs to the zZkSNARK,

allowing any on-chain verifier contract to enforce attestation rules based on them.

5. Proof Generation

The zkVM emits a succinct zero-knowledge proof (e.g., a STARK or SNARK) that

confirms:

“A valid TDX quote signed by Intel proves the enclave with imageld ran a trusted

runtime matching rTMR3 , and correctly reported report data = X.”
This proof is submitted alongside:
e Node registration requests, i.e., in NodeRegistry,

¢ Claims of protocol version compliance, e.g, in smart contract upgrades.
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_I On-chain verifier contracts, such as the Canonical Bridge or Node Registry, do not
inspect the raw quote but instead validate the zkSNARK. These contracts check
that:

e The zk-proof is cryptographically valid and corresponds to the expected
zkVM circuit

e The attested report_data matches the expected constants

e The rRTMR3 is one of the currently whitelisted runtime hashes for the declared

imageld
e The imageld is recognized and not revoked
e The node is not already slashed or removed from the active set

By relying on zk-compressed attestation, t1 achieves a trust-minimized, gas-
efficient enforcement of enclave integrity, with all sensitive quote validation

logic occurring off-chain in a reproducible zkVM program.

Enclave-keyed access and upgrade safety

To decrypt and process encrypted user transactions, Execution AVS nodes require access to a
shared mempool decryption key. This key is sealed to the enclave and is only provisioned to

nodes that have passed remote attestation, verified via zk-compressed TD Quotes.
The attestation proof must confirm that the enclave:

¢ Runs a permitted executor imageld ,

e Measures the expected runtime configuration ( RTVR3 ),

e Reports a fresh nonce bound into report_data ,

e Declares validatorPubkey and HashPubHPKE that match the on-chain epoch constants,

e Reveals a CPU/TDX svN not lower than minTCB |

e Embeds the current protocol tag currentProtoVersion in report_data .

Only then can the node receive the decryption key from existing peers in the network. Key

transfer is performed through an in-enclave, mutually-attested ECDH handshake:

¢ Both TDs verify that the counterparty’s Quote hash and validatorPubkey are marked as

active in NodeRegistry .

¢ They derive a session key from ECDH entirely inside their respective enclaves.
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¢ The live node re-wraps the sealed root_secret under that session key and transmits it; the
newcomer unseals it and deterministically derives its HPKE keys.

Unverified or inactive nodes cannot complete this handshake and therefore never obtain

the decryption key.

Whenever the protocol is upgraded—such as a new Canonical Bridge version, runtime logic
revision, or dependency patch—t1 Security Council simultaneously (i) bumps
currentProtoVersion , (ii) publishes an updated Merkle root of allowedMeasurements , (iii) may
raise minTCB , and (iv) schedules an epoch-wide HPKE key rotation by emitting

HashPubHPKE" , These values define the next valid executor configuration.

Execution AVS validators enforce this policy by accepting only nodes that submit zk-
compressed attestation proofs verifying these exact values. Executors must re-attest using the
new configuration in order to regain access to the sealed mempool key and resume consensus
participation. Until they do, the attested-ECDH channel refuses to deliver root secret ,
instantly disabling their ability to decrypt new transactions or sign blocks. This mechanism
ensures that outdated or forked nodes are cryptographically excluded from transaction
execution and state transition, providing strong upgrade enforcement at both the enclave and

consensus levels.

By binding sealed key access to a multi-factor enclave attestation—checked off-chain in a
zkVM and enforced on-chain by verifier contracts—t1 achieves robust upgrade safety and

execution integrity without relying on manual trust or off-chain coordination.

Data availability

In addition to the new trie roots and Sequencing Consensus and Execution Consensus proofs
going to L1, the full (yet compressed) transactions (inputs to the state transition function) are
posted on Ethereum as blobs by the Executors, and their availability is checked by the
Canonical Bridge when validating a new proposed trie root tuple. This enables anyone to
recreate the state of t1 (but for what happened since the last Ethereum block, so on average
for a maximum of 12 seconds) from trusting Ethereum and Ethereum alone. This also

supports forced transaction inclusion.

Forced tx inclusion (incl. exit)

If the t1 rollup is down, any user will be able to submit their “self-sequenced” t1 transactions
(that may include, e.g., exiting from a DeFi position and then withdrawing to Ethereum) to

the Canonical Bridge contract on Ethereum.
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Infrastructure partners

Automata DCAP

Automata provides an open-source implementation of Intel’s DCAP remote attestation
framework, enabling trusted enclave verification without relying on Intel’s centralized
services. t1 leverages Automata’s DCAP tools inside Executor nodes to generate and validate
TD Quotes, forming the basis for zk-compressed Remote Attestation proofs. This ensures that
only nodes running verified enclave software participate in Execution Consensus, anchoring
hardware trust into Ethereum via zk verification. Automata’s work allows t1 to decentralize

TEE validation, maintaining security even as the network grows permissionless.

EigenLayer AVS

EigenLayer’s Autonomous Verifiable Services (AVS) system allows new protocols to inherit
Ethereum’s economic security through re-staking. Stakers from Ethereum can re-stake their
assets, like ETH, into an AVS, which secures another service, beyond Ethereum, like
Sequencer and Execution Consensus for t1. This model gives new chains like t1 the ability to
bootstrap security without building independent validator sets (leading to inefficiently locked-
up capital). EigenLayer includes strict slashing mechanisms to align validator incentives
across networks, ensuring that re-staked validators are punished for misbehavior, maintaining

strong decentralized security.

Espresso Hotshot Consensus

Espresso’s Hotshot consensus enables finalizing block contents with low latency by utilizing
a leader-based protocol that minimizes coordination overhead. HotShot employs a highly
decentralized set of nodes, where blocks are proposed by a leader and validated through
multiple rounds of voting to ensure consensus. The protocol is designed for scalability and
achieving finality within a second, even under high network load conditions, all while
maintaining decentralization and security by involving many participating nodes in the

consensus process.

RFQ bridges

As t1 targets to solve cross-chain composability and UX challenges, it must provide a world-
class experience for users wanting to withdraw tokens from t1 to partner chains. The t1 bridge
contract on the destination chain first facilitates such a withdrawal. However, there’s no
guarantee that the t1 contract has enough assets for the withdrawal. If it doesn't, t1 will tap
into RFQ bridge protocols, quickly moving funds between the different t1 bridge contracts in
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the background, all to ensure users can seamlessly withdraw tokens to their address on any

destination chain.

Security: On Reorgs

t1 is building a real-time proving rollup that enables near-instant cross-chain settlement
without waiting for long confirmation delays. This significantly enhances user experience and
application composability across Ethereum and partner rollups. However, this design
introduces finality risk — the chance that a transaction could be rendered void due to a reorg

in one of the chains involved. To address this, t1 employs multiple tactics outlined below.

Firstly, t1 generally reorgs together with the L1 (but cf. the impact of FCR under “Flow”
above). When this happens, the user experience on t1 is identical to the user experience on the
reorged L 1. Basically, the transaction never takes place. It’s also worth noting, reorgs on
Ethereum are rare: Since the Merge to Proof-of-Stake, ~0.059% of Ethereum blocks have
been reorged (almost always one-block deep, with only 4 instances of 2-block reorgs).

Moreover, rollups that use centralized sequencers have even lower reorg risk.

The main practical reorg risk arises when the source chain (from which a deposit was made to
t1) reorgs after relevant funds were already withdrawn out of t1 to the third chain. In this rare
scenario, t1 would be out of funds. There are some approaches we are considering to alleviate

this problem:

¢ Inclusion preconfirmations: An inclusion preconfirmation is an optimistic crypto-
economic guarantee that the deposit transaction will be included in the source chain.
Since inclusion pre-confirmations are independent of both ordering and execution
success, they are rather cheap. An inclusion pre-confirmation would guarantee that even
in the event of a reorg on the source chain (e.g. a late block on Ethereum), a t1-depositing
transaction will eventually make it to the source chain. However, its success is not
guaranteed as a malicious user could e.g. have their funds spent before the block is
created for which the preconf had been given. This would result in the t1-depositing tx to

be correctly included, albeit as a reverting tx.

e Execution-success preconfirmations: These optimistic crypto-economic guarantees also
bind the sequencing entity to ensuring that a given tx succeeds (i.e., not revert), not just
that it be included. They are expected to be more expensive, but would allow for fast
deposits secured up to the crypto-economic threshold of the slashable stake of the

sequencing entity.

¢ Insurance pools: t1 can introduce an insurance pool for fast deposit-and-withdrawals and

keep track of which portion of all deposits is final and which is still prone to reorgs, thus
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also capping the maximum loss. This is effectively the purpose that solvers serve today in
intent-based bridging and cross-chain swaps. Such instant deposit-and-withdrawal
actions can require a certain premium fee that would go to an insurance pool so that
potential source-chain-reorg-related losses can be covered by the insurance pool. In the
absence of preconfirmations, the size of instant deposit and withdrawals would be limited

by the size of the insurance pool.

Reorgs are a risk that needs to be accounted for in any on-chain architecture; although they
are rare, they can happen. t1’s approach to reorgs is risk-based and strikes a balance between
enabling a good user experience, providing the right functionality, and accounting for the

worst-case scenario.

Native t1 applications

Applications built natively on t1 leverage real-time proving and are designed to provide a
better user experience with seamless cross-chain coordination. We’re still early in uncovering
all of the possibilities real-time proving enables, but have identified a few primitives that are

uniquely enabled by t1:

¢ Cross-chain vaults, non-custodial cross-chain yield optimization that automates yield
discovery and rebalancing across rollups. Using t1’s real-time proving (RTP)

interoperability infrastructure, funds move between lending protocols and yield sources.

¢ Cross-chain loans enable users to deposit collateral into lending contracts on any partner
rollup, while market makers borrow against these deposits through t1’s cross-chain
collateral accounts to fill intents. Loans can be settled and returned to the origin chain
within one minute, with a share of bridging fees passed back to depositors as yield. This
design reduces capital requirements for borrowers while delivering competitive, real-

demand-driven returns to lenders.

e Same-block-deposit-trade-withdrawal (aka Same-Block-DTW) dApp flows: A user on
Ethereum is able to use t1 to e.g. trade without even realizing they’re leaving Ethereum
(no wallet network switching etc.). Their original deposit transaction on L.1 into t1 may
contain e.g. trade intent metadata that gets interpreted by t1 out-of-band and submitted to
a marketplace of solvers, resulting in one of them placing a new tx on t1 which is
ultimately leading to a withdrawal tx back to the L1—which may be sealed into the very

same L1 block as the original deposit tx and succeed or fail L.1-atomically.

These use-cases build TVL on t1 and empower the network to become a programmable

liquidity layer that any connected chain can tap into. Thanks to RTP, t1 eliminates the

t1 Vision Litepaper



fragmentation of liquidity across isolated ecosystems and enables applications to operate as if

liquidity were unified.

t1 is also designed to enhance the functionality of existing applications. For Ethereum L1
applications, t1 offers an execution environment with significantly lower costs while
maintaining composability with Ethereum, enabling applications to scale. Appchains and
rollups can leverage t1’s infrastructure to access cross-chain liquidity without the need for
custom integrations or shared sequencer agreements. By being as a permissionless interop
layer, t1 ultimately allows partner applications to improve capital efficiency and offer better
UX.

Conclusion

Today, applications need to deploy on multiple rollups to meet user demand. In the future,
applications built on t1 will be able to serve users across multiple rollups by deploying on t1

alone.

Glossary

See https://docs.t1protocol.com/concepts/glossary.
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