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Abstract

t1 leverages cutting-edge Trusted Execution Environments (TEEs) to achieve real-time, 
provably secure transaction execution on Ethereum, with any interim economic risk capped 
by an on-chain insurance fund that limits the value processed between periodic zero-
knowledge (zk) proof checkpoints. This document specifies the planned TEE architecture, 
event-driven remote-attestation model, and enclave lifecycle that underpin t1’s design. We 
detail how Intel TDX “Trust Domains” (isolated confidential VMs) serve as secure Executors, 
protecting roll-up computation with hardware-enforced isolation. We describe a novel 
attestation pipeline in which each Executor Trust Domain generates an attestation quote—a 
hardware-signed blob, produced by Intel’s TD Quoting Enclave, that contains the TD’s 
measurement hash (MRTD), current security-version numbers (SVNs), and a 64-byte 
REPORT_DATA  payload bound to a verifier-supplied nonce—when it first joins the validator set, 

upgrades its software, or refreshes its Trusted Computing Base (TCB); the quote is then 
verified inside a zero-knowledge VM (zkVM), compressing the result into a 
Remote Attestation Proof. 
While this Remote Attestation Proof is built with zero‑knowledge technology, it serves a 
different purpose from a ZKP checkpoint: it certifies the authenticity of the Executor’s 
hardware and binary, whereas a ZKP checkpoint cryptographically certifies the correctness of 
the roll‑up’s state‑transition computation. On-chain smart contracts can therefore trustlessly 
verify—at every security-relevant event—that authorised enclaves remain authentic and 
untampered, and are running the expected code.

The same architecture enables t1 enclaves to operate a shared (partially) encrypted mempool 
based on hybrid public-key encryption (HPKE) (eliminating MEV by keeping pending 
transactions confidential) and to enforce enclave-signed access controls for protocol 
operations and upgrades. We further introduce t1’s cross-chain interoperability support: 
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enclaves can perform authenticated reads of and writes to external blockchain state via co-
located full nodes.

We distinguish hardware attestation from full cryptographic proofs, such as ZKP with formal 
verification methods, thereby clarifying TDX isolation guarantees. We are using 
unpredictable nonces ( report_data ) to prevent replay of attestation quotes, and requiring open-
source, reproducibly built enclave binaries so that measurements can be independently 
verified. Finally, we present a robust TCB recovery and patching strategy: the protocol 
detects outdated or compromised enclaves, triggers mandatory re-attestation after critical 
updates, and rotates sealed keys to maintain security. A companion paper will provide a 
detailed description of the insurance-fund mechanism and ZKP checkpoint cadence. 

In summary, this document provides both high-level and in-depth specifications of t1’s TEE-
based security architecture, ensuring transparency and rigor in how t1 combines TEEs and 
Ethereum to achieve fast yet trust-minimized roll-up execution.

Executive Summary

t1’s design marries hardware-based trusted computing with blockchain verification to enable 
instant yet secure roll-up finality. Each t1 Executor runs inside an Intel TDX Trust Domain 
(TD)—a hardware-isolated virtual machine whose memory is encrypted and inaccessible to 
the host system. Within these TDs, the roll-up’s state-transition function (transaction-
execution engine) operates on private state data and mempool transactions, shielded from 
even the node operator’s OS. An on-chain counter tracks the total value handled via this fast 
TEE path; when that counter reaches a preset insurance limit, the protocol first incentivizes 
the posting of a ZKP checkpoint. Then it ramps up the incentive and halts once too close to 
the crypto economic budget. Only then does it continue processing further funds.

To assure all parties that these protected Executors are running the correct code, t1 employs 
an event-driven remote-attestation system: each TD produces a cryptographically signed 
quote when it is first authorised or whenever the protocol image, version tag, or platform 
TCB changes. The attestation flow uses TDX’s SEAMREPORT  instruction to create a 
measurement report, which is then signed by Intel’s quoting enclave to yield a remotely 
verifiable quote that embeds a fresh nonce in report_data , preventing replay attacks.

Because these quotes are large and computationally expensive to verify, t1 makes verification 
trustless and efficient on Ethereum through a zkSNARK-based Remote Attestation Proof 
verifier. Off-chain, a specialised zkVM (e.g., Risc0) re-executes the DCAP verification logic 
against Intel’s certificates and revocation lists, then emits a constant-size proof. On Ethereum, 
t1’s verifier smart contract registers or renews a validator only when it receives such a valid 
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Remote Attestation Proof; thereafter, block proposals and cross-chain signatures from that 
validator are accepted so long as the Node Registry marks its attestation as allowed.

Beyond attestation, the document details how t1’s TEEs support an encrypted mempool, 
enclave-keyed protocol authorization, and secure cross-chain reads/writes. Encrypted 
transactions remain confidential until executed inside the enclave, thwarting MEV. Crucially, 
only the privacy‑sensitive payload is cipher‑texted—sender, nonce, gas‑limit, max‑fee and 
signature stay in plaintext so sequencers can still rate‑limit spammers, enforce fees and size 
limits, and drop malformed blobs without first decrypting them, avoiding the DoS pitfalls of a 
fully opaque mempool.

A secure provisioning mechanism transfers the sealed root_secret  peer-to-peer via remote 
attestation to enclaves whose measurement has been verified on-chain. The transfer occurs 
over an attested ECDH channel established between allowed nodes and newly verified ones; 
no centralized distributor or plaintext exposure exists. All critical protocol actions—state 
updates, upgrade approvals, bridge messages—require signatures from enclave identity keys 
that are themselves bound to these attestations.

Finally, we explain how Executor TDs act as followers of external chains, verify state proofs 
inside the enclave, and record every external read in a Proof-of-Read Trie that is published 
alongside the roll-up state root. Outbound cross-chain writes are best-effort and must be 
confirmed by subsequent reads.

This architecture clarifies what guarantees TEEs provide (hardware-backed isolation and 
binary-level integrity) versus what ZKP checkpoints provide. By insisting on open-source, 
reproducible binaries and nonce-bound quotes, t1 extends traditional TEE trust into an 
auditable, permissionless blockchain context—delivering real-time settlement while requiring 
fresh proofs only at genuine changes in the system’s trust assumptions.

By t1: Wojciech Aleksander Wołoszyn, Orest Tarasiuk et al.
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1. Introduction and Background
1.1 Trusted Execution Environments (TEEs) in Blockchain. Blockchains typically assume 
that all computation by validators or sequencers is fully deterministic and eventually verified 
(either by every node's re-execution or via succinct proofs). The t1 rollup introduces a semi-
trusted layer in this model: specialized hardware environments known as Trusted Execution 
Environments (TEEs) perform the rollup’s transaction execution and immediately vouch for 
their results. A TEE is a secure area of a processor that guarantees code and data loaded into it 
are protected with respect to integrity and confidentiality. Even if the host operating system or 
hypervisor is malicious, it cannot tamper with or inspect the TEE’s execution. Intel SGX, 
Intel TDX, AMD SEV-SNP, and AWS Nitro Enclaves are prominent TEE technologies that 
isolate computation from a potentially compromised OS. The security of TEEs ultimately 
relies on hardware and low-level firmware (the TCB) that is trusted to enforce said isolation. 
In exchange, TEEs offer powerful capabilities for blockchain systems: they can keep data 
secret (e.g., mempool transactions, private state), and they can produce proofs that convince 
others of what code they are running, and of what output it produces. Projects like Town Crier 
demonstrated that TEEs (SGX enclaves) can act as secure oracles, fetching external data and 
proving to smart contracts that the data came from an untampered source. More recently, 
Layer-2 protocols and research prototypes have begun integrating TEEs to accelerate off-
chain computation while maintaining verifiability. In a multi-prover rollup architecture, a 
TEE-based prover can provide instant attestations of correctness (based on hardware trust) to 
complement slower cryptographic proofs. 
t1 follows this path by using TEEs to achieve real-time settlement of execution results while 
requiring fresh hardware proofs only at onboarding, upgrades, or TCB-revocation events, 
bridging the gap between honest-majority consensus assumptions and full zero-knowledge 
proofs.

1.2 Intel TDX and Trust Domains vs. Enclaves. t1 specifically employs Intel Trust 
Domain Extensions (TDX) for its Executor environments. It is important to clarify TDX’s 
model of trust domains vis-à-vis the classic enclave model (as in SGX). In SGX, an enclave is 
a protected region within a process’s address space – a relatively small memory region with 
strict limits, requiring applications to be refactored into enclave and non-enclave parts. By 
contrast, Intel TDX creates isolated virtual machines called Trust Domains (TDs). With 
TDX, an entire VM (including its OS and applications) runs in a special isolated context 
(SEAM mode) with memory encryption, so the whole VM is effectively an enclave. The 
hypervisor (VMM) and host OS are untrusted and cannot read or modify the TD’s memory. 

9. Conclusion
Acknowledgments
Glossary
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Memory belonging to a TD is automatically encrypted with a per-VM key and integrity-
protected. This design overcomes some SGX limitations (notably the memory size constraints 
and the need to rewrite apps for enclaves). In t1, each node runs its critical execution 
component inside a TDX TD – essentially, we deploy the rollup client as a dedicated 
confidential VM. We will use the term 'Trust Domain' for these TDX-protected VMs, and 
reserve 'enclave' for SGX-style enclaves or as a general term for isolated execution contexts. 
For example, Intel’s quoting enclave (part of the attestation process) is an SGX enclave 
running on the host, while the rollup Executor is in a Trust Domain. Table 1 below 
summarizes the structural and operational differences between SGX enclaves and TDX Trust 
Domains in the context of t1.

Table 1. Comparison of SGX Enclaves vs. TDX Trust Domains

Feature SGX Enclave TDX Trust Domain (TD)

Isolation scope Process-level enclave
Entire virtual machine (VM-
level enclave)

Memory size Limited (typically <128 MB) Large (can span multiple GBs)

Application model
Requires enclave-aware
application design

Supports unmodified Linux OS
and applications

Measurement identity
MRENCLAVE  (enclave content

hash)
MRTD  (initial VM memory

hash)

Attestation signer Quoting Enclave (QE)
TD Quoting Enclave (TDQE,
runs via SGX)

Sealing and persistence CPU-bound sealing key
VM-level sealing or SGX-
assisted sealing

Integration in t1
Used for attestation
infrastructure only

Used to host Executor
environment

By adopting TDX, t1 places each Executor in its own trust domain, achieving strong 
hardware isolation without requiring a redesign of the entire Ethereum execution stack for 
enclaves. TDX is a recent technology – available on Intel 4th/5th Gen Xeon CPUs (Sapphire 
Rapids, Emerald Rapids) – and offers a path forward as SGX is repositioned for more 
specialized use cases on newer chips. We assume our infrastructure (cloud bare-metal 
deployments) provides TDX-capable servers. The threat model assumes the worst-case 
scenario for everything outside the trust domain: we do not trust the hypervisor, host OS, or 
any external party. Only the CPU/TDX module and the code running inside the TD (which we
control and attest) are trusted to maintain security.

1.3 Remote Attestation Fundamentals. A cornerstone of confidential computing is Remote 
Attestation (RA). Attestation is the process by which a TEE proves to a remote verifier what 
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software is running inside it, and that the TEE is genuine and up-to-date. In simpler terms, it’s 
how our t1 trust domains convince Ethereum (and users) “I am running the official rollup 
software in a secure enclave, not a modified or compromised version.” Attestation typically 
works by generating a cryptographic measurement of the enclave/TD (like a hash of its initial 
state or binary) and then having the hardware or its manufacturer sign a certificate of that 
measurement. Intel’s attestation infrastructure comprises multiple components: each CPU is 
equipped with embedded keys (e.g., the Provisioning Certification Key, or PCK, tied to the 
CPU’s EPID or ECDSA identity). Intel issues certificates for these keys (via the Provisioning 
Certification Enclave, PCE) and provides a quoting mechanism (via the Quoting Enclave, 
QE, or TD Quoting Enclave, TDQE for TDX). When a trust domain is launched, the TDX 
module can produce a TD report (using SEAMREPORT ), which contains the TD’s 
measurements, security version numbers, etc., and is signed with a CPU-specific key. The 
untrusted host then passes this report to the TD Quoting Enclave (an SGX enclave running on 
the same host), which verifies the report (via a local attestation MAC) and then signs out an 
ECDSA Quote using the CPU’s attestation key. This quote can be sent to a remote verifier; it 
contains (a) the measurement of the TD, (b) the TEE platform’s TCB status (to indicate if 
firmware is updated), and (c) any user-provided data (like a nonce or public key). The quote 
is signed by an attestation key whose certificate chains to an Intel root of trust, allowing the 
verifier to validate that the quote is authentic. Modern attestation (Intel DCAP for SGX/TDX) 
no longer requires contacting Intel’s online service for each quote; instead, Intel provides the 
necessary certificate chain and revocation lists (collectively called attestation collateral) so 
that anyone can locally verify a quote’s signature. This is crucial for decentralization: t1 can 
perform quote verification in a self-contained manner, rather than relying on an Intel-run API 
(which could be a censorship or availability bottleneck).

For robust security, the attestation process must ensure freshness. This is why including a 
challenge or nonce in the attestation is a standard practice. In Intel’s API, a verifier will send a
32-byte random nonce to the enclave, which the enclave includes in the REPORT_DATA  field 
before asking for a quote. The resulting quote’s hash binds that nonce, so it cannot be reused 
for a different session. t1 follows this by always using unique nonces (e.g., derived from the 
expected L1 block number or an incrementing counter) when requesting attestations from 
Executors. Additionally, the REPORT_DATA  can carry other context: for instance, we include an 
identifier for which rollup instance and which network the attestation is for, to avoid any 
confusion or cross-use of quotes. The attestation quote verification involves checking the 
certificate chain (PCK certificate signed by Intel’s CA), ensuring none of the certificates are 
revoked (via CRLs with statuses like TDX TCB: out-of-date  or not) and verifying that the 
measurement matches the expected value for our software. If all checks pass, the verifier 
obtains confidence that the remote party is a legitimate TEE running our code on a platform 
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at least as secure as a baseline (we might require, for example, TDX SVN >= X, meaning all 
known microcode patches are applied).

In summary, remote attestation in t1 provides a root of trust that anchors in hardware. Unlike 
a pure cryptographic proof of computation, attestation has a trust assumption: you trust Intel 
(and possibly the platform owner to some extent) that if the quote is valid, the code ran 
without tampering. We emphasize this difference: attestation proves the integrity of the 
execution environment but does not mathematically prove the correctness of the output – for 
the latter,  a Remote Attestation proof of the computation itself is required. t1 actually 
combines both approaches: hardware attestation for immediate trust, and eventually ZKP 
checkpoint, via on-demand ZKP or periodic ZKP, for full validity proofs (as part of its multi-
prover real-time proof architecture, though the ZKP checkpoint aspect for transactions is 
outside the scope of this TEE paper).

1.4 System Overview. At a high level t1 operates as follows. A decentralised set of Executor 
Trust Domains (TDs)—Intel TDX confidential VMs—collectively maintain the L2 state. 
Users encrypt their transactions with the published HPKE public key and broadcast them; 
only TDs can decrypt these ciphertexts. A leader TD applies a deterministic ordering policy, 
executes the transactions, and derives a new L2 state root together with any auxiliary roots 
(e.g., a Proof-of-Read trie). Economic exposure on this fast TEE path is strictly capped by an 
on-chain insurance fund; see bullet 5 below.

1. Block authentication without per-block attestation.

Each TD possesses an enclave identity key generated inside the enclave at onboarding.

The public half of this key is bound to a zk-compressed attestation proof that the 
TD submitted once, either at node registration, at least the most recent 
protocol/enclave upgrade, or after the latest TCB-revocation event.

The on-chain Node Registry contract stores this proof and flags the node as allowed.

For every subsequent L2 block, the TD simply signs ⟨state root ‖ block metadata⟩  with 
its identity key. Because the key is already anchored to a verified attestation, no fresh
quote is required; the block producer includes only the signature, which other TDs 
and the L1 contract can check against the current allowed-set map.

2. Event-triggered re-attestation.

A TD must regenerate an attestation quote and a new zk-SNARK only when one of 
three events occurs:

Onboarding / re-join. A new or previously offline node is added to the validator set.
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Protocol or enclave-code upgrade. Governance publishes a new allowed 
measurement or protocol-version tag; all older measurements are invalidated in the 
Node Registry.

Protocol Governance is the on-chain authority whose actions are authorized by 
a threshold (e.g., ≥⅔ stake) of currently-allowed TEE validators (the “existing 
node set”) signing an action slot with their enclave keys. Protocol Governance 
may bump currentProtoVersion  and/or update allowedMeasurements . Upon 
activation, the Node Registry invalidates older measurements and marks 
validators not allowed until they re-attest. 

A separately appointed k-of-n multisig (the Security Council) holds only time-
boxed/scoped emergency powers intended to stop harm or censorship by a rogue
TEE majority.

TCB-level revocation. Intel or governance raises the minimum acceptable 
microcode SVN (or otherwise marks a vulnerability); the Node Registry enforces the 
higher minTCB .

Until a node posts a new proof that satisfies the updated policy, its signatures are rejected 
by both the consensus layer and the Canonical Bridge.

3. Key provisioning gated by the latest proof.

Bridge-signing keys, threshold-signature shares, and the root-secret epoch currently in 
force (from which Priv_HPKE is derived) are handed to a TD only after its most recent 
zk-SNARK proof has been verified on-chain. If a validator falls out of compliance, or if 
governance toggles a requireReattestation  flag in an emergency—key-distribution services 
withhold or revoke those secrets, instantly disabling the node’s influence without 
affecting live peers.

4. Real-time settlement preserved.

Although hardware proofs are not emitted per block, every new state root is still posted 
to Ethereum each second, together with a quorum of enclave signatures. The L1 contract 
finalises the block immediately, provided all signatures map to allowed TDs in the 
registry. Hence, the roll-up maintains one-block settlement latency—attestation latency 
is amortised over long intervals and does not appear on the critical path.

5. Insurance-fund bounded risk. 

Every block header reports two values— blockValue , the total amount transferred in that 
block, and cumValueSinceZKP , the running total of value moved since the last validity-
proof checkpoint. A validator must refuse to sign any block whose cumValueSinceZKP + 
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blockValue  would exceed the current balance of an on-chain insurance fund maintained by 
governance. Once that ceiling is reached, validators pause value-bearing blocks until a 
zk-SNARK proof is submitted that validates all state transitions from the previous 
checkpoint forward, and resets cumValueSinceZKP  to zero, and thereby reopens headroom 
under the insurance cap. The forthcoming t1 ZKP-Fallback specification will lay out 
the exact logic that makes this safeguard enforceable.

6. Fallback to validity proofs.

Should a TDX vulnerability surface that cannot be mitigated in real time, governance 
may suspend TD signatures and revert to mandatory zk-SNARK validity proofs of the 
full state transition. This contingency preserves safety while the enclave software or Intel 
microcode undergoes urgent remediation.

The event-driven attestation cadence thus decouples block production from zk-proof 
generation costs, while ensuring that every validator’s hardware-rooted trust is re-established 
exactly when the system’s threat surface materially changes.

1.5 Early‑Stage “Single‑Node” Resilience. While the validator set is still forming, the roll‑up 
may run on a single attested Executor Trust Domain. To avoid stalls and silent data loss 
during this phase we rely on the following lightweight guarantees.

I/O path. Every outbound commit is signed inside the enclave; every inbound payload 
carries an ever‑increasing nonce.  Signatures stop the host from tampering, nonces stop it 
from replaying or re‑ordering messages, and a simple heartbeat lets the enclave detect 
when the outside world stops responding.

Downtime handling. If the TEE is shut down—gracefully or by crash—it seals its state, 
then on restart re‑attests automatically and resumes from the last confirmed block.  A 
configurable liveness fuse on‑chain freezes deposits if no state‑root appears within a few 
block intervals, unfreezing the moment a fresh attestation is posted or a standby node 
comes online.

These safeguards keep confidentiality, integrity and a bounded level of availability until a 
multi‑node quorum takes over and ordinary consensus rules apply.

ℹ️ The following sections assume familiarity with Ethereum rollup concepts 
including sequencers, state roots, and Merkle proofs. The focus is on TEE-related 
aspects. We aim to keep each section self-contained for clarity.
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2. TEE-Based Executor Architecture in t1
2.1 Trust Domains as Rollup Executors. In t1, each trusted Executor is an Intel TDX Trust 
Domain running a tailored Linux OS and the t1 rollup node software. The trust domain 
encapsulates the execution engine that processes L2 transactions and updates state. When a t1 
node boots, it launches a TD via the TDX module: the CPU enters SEAM mode and measures 
the initial memory (which includes the OS kernel, t1 binary, and any supporting code). This 
measurement is essentially a cryptographic hash (SHA-384 in TDX’s implementation) of the 
TD’s initial contents. We denote this expected measurement as M_e (for example, the hash of 
the t1 enclave’s boot image). Only if the measurement matches will the CPU allow the TD to 
fully initialize. Any tampering in the launch process would result in a different measurement, 
and the attestation later would reveal the mismatch, causing verifiers to reject it. Once 
running, the TD’s memory is protected: all RAM pages assigned to it are encrypted with a 
hardware key unique to that TD. The memory controller ensures that if those pages are ever 
written to DRAM or accessed by the host, they remain encrypted. The encryption key is 
managed by the CPU and is not accessible to software. Even DMA (Direct Memory Access) 
from peripheral devices is blocked, or cannot read the TD memory. Furthermore, TDX 
provides integrity protection (optionally) – a cryptographic MAC is maintained for each 
memory line to detect any replay or bit-flip attacks on memory. The TD’s CPU state 
(registers) is also saved and restored securely, such that when the TD is not executing, its 
registers are stored in an encrypted form, preventing the hypervisor from snooping on them.

In essence, once a t1 Executor TD is launched, it operates as if on a dedicated secure 
machine: the untrusted host can schedule it (start/stop the vCPU), but cannot see its internal 
state or influence its computation beyond denying service. This strong isolation is key to 
achieving what we refer to as “confidential and integral execution” – confidentiality meaning 
that the inputs (such as pending transactions) and intermediate states are hidden, and integrity 
meaning that no external tampering can alter the execution without detection. We avoid 
calling this “cryptographic isolation” in order not to confuse it with cryptographic proof 
systems; rather, it is hardware-enforced isolation using cryptography (memory encryption) 
under the hood.

2.2 Enclave Software Stack and Measurement. The software running inside the TD is 
composed of an OS, likely a minimal Linux distribution, plus the t1 node application. To 
reduce the TCB inside the enclave, we minimize unnecessary services and drivers in the TD’s 
OS. Ideally, we use a slimmed-down kernel and possibly a unikernel or library OS approach 
for the rollup Executor. However, for practicality and compatibility with Ethereum clients 
(which often expect a standard OS environment), we currently use a standard Linux with only 
the required components. The entire stack is built reproducibly (see Section 7.4 on 
reproducible builds) allowing its measurement to be independently verified by developers. 
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The measurement M_e includes the kernel, init system, and the t1 binary; if any of these 
change (even a single byte), the measurement will differ. We leverage this fact to enforce 
version control: when a new version of the rollup software is released (or a security patch is 
applied), it results in a new measurement, which will require updating the accepted values in 
the attestation verification process. This provides a form of binary authorization – only 
binaries that produce an approved hash will be recognized as valid Executor enclaves. A 
downside is that even benign changes (such as compiling the same source with a different 
compiler version) yield different measurements, hence the emphasis on reproducible builds so 
that a canonical binary can be agreed upon.

At runtime, the enclave stack includes a few important components: (a) a secure clock or 
trusted timestamp source (possibly using TDX’s trusted time or synchronizing with the host 
but verifying it), since timing may be needed for time-based logic; (b) a source of randomness 
(the CPU’s hardware RNG is accessible and can seed a DRBG inside the enclave); (c) 
networking and storage interfaces proxied via the untrusted host – data coming from outside 
is validated or decrypted as needed inside the enclave. For example, transactions arrive 
encrypted, so even if the host tries to feed corrupted data, the enclave will either detect 
decryption failure or malformed input. For cross-chain read data, as discussed, cryptographic 
proofs are provided and verified by the enclave; thus, the host cannot simply lie about an 
external account balance without being caught by a mismatched Merkle proof or signature.

2.3 Trust Domains vs. Multiple Enclaves.  In earlier SGX-based systems, it was common to 
slice a roll-up node into several process-level enclaves: one enclave might hold the execution 
engine, another the key-management code, while external processes handled networking and 
storage. That approach kept individual binaries small, but it also forced every enclave to hand 
sensitive data across an untrusted operating system, reopening the very side-channels the TEE 
was meant to close. With Intel TDX, we place the entire roll-up stack—execution engine, 
encrypted mempool handler, and the light- or full-client logic that services cross-chain reads
—inside a single confidential virtual machine. All code and data, therefore, live behind the 
same memory-encryption boundary, eliminating inter-enclave gaps and simplifying the threat 
model to “everything inside the TD is trusted; everything outside is not.”

This monolithic layout also streamlines attestation. TDX reports and quotes cover the whole 
VM in one shot, so each validator needs only a single measurement, a single SVN vector, and
—per security-relevant event (§ 3.6)—a single zk-compressed proof that NodeRegistry  can 
record or revoke. Operational overhead falls sharply: operators no longer juggle a dozen 
enclave quotes, and the on-chain registry maintains just one allowed attestation record per 
node.

Finally, the resource cost is modest. Running a pruned Ethereum full client alongside the roll-
up engine consumes on the order of 8 GB of TD memory, and any archival snapshots needed 
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for edge-case proofs can reside on read-only, encrypted volumes outside the hot footprint. 
The result is a cleaner, fully self-contained Executor whose security and lifecycle 
management align neatly with the event-driven attestation policy defined in Section 3.

2.4 Secure Communication. Once the enclave is up, it needs to communicate with the 
outside world, such as sending the attestation quote to a verifier, submitting transactions to 
L1, and receiving user transactions, among other tasks. All network traffic leaving the enclave 
is encrypted at the application level. For instance, the enclave might establish a TLS 
connection out to a public endpoint. However, since the host can tamper with or observe 
traffic, we typically treat it like a MITM adversary. Therefore, the enclave will use end-to-end 
secure channels whenever confidentiality or data integrity is required. A key example is the 
mempool: users will encrypt their transactions to the rollup’s public key and send them over 
normal networks; the host just forwards the ciphertext to the enclave, which can decrypt it. 
When the enclave needs to output a result (like a new state root and proof), it often signs it 
with its enclave identity key, so any recipient can verify it originated from a valid enclave (by 
checking the signature against the enclave’s public key that was included in an attestation on-
chain). 
In essence, digital signatures from the enclave serve as a second layer of attestation for 
individual messages, complementing the event-triggered attestation proofs that are submitted 
only upon validator onboarding, upgrade, or TCB revalidation. We ensure that each enclave 
has a unique keypair and that keypair’s public key is either in the attestation’s report_data  or is 
it derivable from a known seed sealed in the enclave. In Section 5, we outline how these keys 
are managed and utilized for access control.

In summary, the architecture treats the trust domain as a black box that only interfaces with 
the external world through attested, authenticated channels. Any data coming out is signed or 
part of an attested payload; any data going in is encrypted or accompanied by proofs that the 
enclave will verify. This way, even though the host facilitates IO, it cannot violate the security 
or correctness of the enclave’s operations. With the basic execution environment described, 
we now turn to the remote attestation process, which bootstraps trust in these Executors from 
the standpoint of the Ethereum blockchain.

3. Remote Attestation Pipeline
The remote attestation pipeline in our architecture comprises six stages (Sections 3.1–3.6) 
that connect trusted hardware attestations with on-chain verification and policy enforcement. 
This end-to-end process begins with the generation of a hardware-backed attestation quote 
inside a Trusted Execution Environment (TEE) and culminates in the on-chain validation of 
that attestation via zero-knowledge proofs, followed by event-driven policy actions. Each 
stage is designed to preserve security and integrity while minimizing on-chain overhead. In 
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the following subsections, we detail each step: from quote generation and zk-SNARK proof 
production to on-chain verification and the enforcement of attestation policies.

3.1 Generating Attestation Quotes (TDX -> Quote). A t1 Executor Trust Domain (TD) 
produces a hardware quote only at attestation rounds triggered by security-relevant 
events—specifically, node onboarding or re-joining, enclave-code or protocol upgrades, and 
platform TCB changes mandated by governance (cf. Section 3.6).  Upon receipt of the 
verifier’s nonce, the enclave invokes the TDX report instruction (analogous to SGX’s 
EREPORT ; on TDX platforms, this is TDG.MR.REPORT ) to obtain a local TD-report containing 

(i) the measurement of the TD’s initial memory image, (ii) the current CPU/firmware 
security-version numbers, and (iii) the REPORT_DATA  hash that binds the nonce, the validator’s 
public key, and the current protocol-version tag.

Because a TD-report is not directly verifiable off-chip, it must be converted into a TDX 
Quote by Intel’s quoting stack resident in the untrusted host.  The enclave transmits the report 
to the host via the hypervisor-mediated shared-memory interface; the host then calls the TD 
Quoting Library, which delegates to the TD Quoting Enclave (TDQE).  TDQE—an Intel-
signed SGX enclave—verifies the report’s MAC, consults the Provisioning Certification 
Enclave (PCE) to obtain the CPU’s Provisioning Certification Key (PCK) certificate, and 
signs the report with the CPU’s attestation key.  

Assuming Intel’s root keys remain uncompromised, the Quote is cryptographically 
unforgeable.  In t1, the immediate consumer of every Quote is an off-chain zkVM 
attestation-verifier circuit that re-executes the Data-Center Attestation Primitives (DCAP) 
checks and emits a succinct zk-SNARK attesting to the Quote’s validity; the on-chain 
NodeRegistry  accepts or rejects the validator based on that proof.

3.2 Off-Chain Quote Verification (zkVM Validation). 

Each attestation round (Section 3.6) produces a single TDX Quote whose validity must be 
exhaustively checked before the validator’s signing key is accepted for subsequent blocks.  
Because the full Intel DCAP verification procedure is far too heavy for an Ethereum contract, 
t1 executes it inside a zero-knowledge virtual machine and publishes a compact zk-SNARK 
proof.

Verification routine executed inside the Risc0 zkVM

Step Purpose Inputs

1. Parse quote and collateral

Deserialize the Quote; extract
the embedded PCK certificate,
any intermediates, and all
metadata fields.

Raw Quote bytes, Intel CRLs,
hard-coded Intel root certificate
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2. Certificate-chain validation

Confirm that the PCK certificate
chains, via valid intermediates,
to the hard-coded Intel root;
reject if any certificate is expired
or malformed.

Same X.509 chain

3. CRL and TCB checks

Ensure that neither the PCK
certificate nor its issuer appear
in the supplied CRLs; require
that the CPU security-version
number (SVN) is at least the
governance-defined minimum.

Intel CRLs, value of minTCB

4. Quote-signature check

Verify the ECDSA-P256
signature over the Quote body
using the attestation public key
contained in the certified PCK.

Quote body, PCK public key

5. REPORT_DATA validation Recompute `SHA256(nonce

6. Measurement admissibility

Check that the TD measurement
in the Quote appears in the
governance-supplied allow-list
corresponding to the stated
protocol version. The allow-list
root is provided as an input, and
the zkVM verifies a Merkle
inclusion proof for the
measurement hash.

TD measurement, allow-list
root, inclusion proof

If all predicates hold, the program writes to its public journal:

validatorPubKey
measurementHash
protocolVersion
TCB_SVN
QuoteValid = 1

Risc0 then produces a STARK trace of the execution and compresses it into a Groth16 zk-
SNARK; size is about 200 bytes and on-chain verification costs roughly 250 k gas.

On-chain acceptance logic

The NodeRegistry  contract:

1. Verifies the zk-SNARK.

t1’s TEE Architecture and Remote Attestation 14



2. Confirms that protocolVersion  equals the governance constant currentProtoVersion .

3. Stores (validatorPubKey, measurementHash, attestedAt)  as an allowed validator record.

4. Emits ValidatorActivated(validatorPubKey) .

From that point forward, every L2 block header, withdrawal root, or cross-chain message 
signed by the recorded public key is accepted until the next attestation trigger (upgrade, TCB 
bump, emergency re-validation, or long-horizon expiry).  A single zk-proof thus amortizes 
hardware-rooted trust over the entire epoch, while any Ethereum participant can 
independently audit the attestation by checking the proof on chain.

3.3 On-Chain Verification and Enforcement. With attestation now confined to discrete 
security-relevant rounds (Section 3.6), the zk-SNARK proving a validator’s TDX Quote is 
carried only in a dedicated attestation transaction, not in routine block-submission calls.  
Two on-chain components share the enforcement logic.

NodeRegistry – admission of validator keys.

Whenever a Trust Domain completes an attestation round—whether at initial join, after a 
protocol/enclave upgrade, or following a TCB-revision—it submits to NodeRegistry the tuple 
(zkProof, quoteHash, validatorPubKey, protoVersion, nonce)

The contract invokes the Groth16 pre-compile to verify zkProof .

If the proof is sound and its public outputs satisfy:

protoVersion  equals the governance constant currentProtoVersion ;

the extracted measurement hash appears in the allowedMeasurements  set for that protocol 
version; and

the reported TCB_SVN  is at least minTCB ,

Then the pair (validatorPubKey , measurementHash)  is recorded as allowed, together with the 
timestamp attestedAt .  Any subsequent governance action that increments currentProtoVersion , 
raises minTCB , or flags a key for emergency re-attestation automatically renders the 
corresponding entry not allowed until a new proof is lodged.

CanonicalBridge – block-level acceptance.

Each L2 block header is furnished with a digital signature under the validator’s enclave key.  
On reception, CanonicalBridge verifies that the signer’s public key is listed as allowed in 
NodeRegistry and that the attestation timestamp is not older than the permitted maxAge .  Only 
if these conditions hold does the contract accept the state-root tuple (execution, withdrawal, 
and proof-of-read roots) and finalise the block on Ethereum.
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3.4 Replay Protection with Nonces: Remote-attestation rounds in t1 are infrequent but 
critical to security. To guarantee that each round is fresh and cannot be replayed, the verifier 
issues a unique 256-bit challenge nonce, and the Trust Domain (TD) must bind that nonce to 
its quote as follows:

1. Challenge acquisition.

The TD calls NodeRegistry.requestNonce(nodeId)  and receives a Keccak-derived random 
value nonce .

2. Nonce commitment.

Before invoking SEAMREPORT , the TD computes REPORT_DATA = SHA256(nonce ∥ 

currentProtoVersion ∥ nodeId ∥ HashPubHPKE)  and embeds the 64-byte digest into the report. 
Because REPORT_DATA  is covered by the TDX signature, the nonce becomes inseparable 
from the quote.

3. zk-compressed verification.

The off-chain zkVM takes nonce  as a public input; if the digest inside the quote does not 
match, the proof fails. On success, NodeRegistry.register()  records the validator as allowed 
and forever burns the nonce to prevent reuse.

A single fresh nonce is sufficient per attestation cycle. Event-driven policy ensures that cycles 
occur only on onboarding, upgrades, or TCB events, not on every block.

3.5 Binding Attestation to Validator Credentials and Protocol Version: Because t1 emits a 
hardware quote only when a validator (re)attests—not for every L2 block—the quote must 
establish a stable cryptographic anchor that remains valid across the many blocks the node 
will later produce.  We bind the quote to two pieces of data that uniquely identify the 
validator’s role in the current epoch:

Field encoded in REPORT_DATA Purpose

validatorPubKey  (32 / 33 bytes)

Long-lived ECDSA/EdDSA public key that the
enclave will use to sign every block header,
withdrawal root, and cross-chain message until
the next attestation event.

currentProtoVersion  (4–8 bytes)

Monotonically increasing tag set by governance
each time enclave code or consensus logic
changes. Ensures mixed-version execution cannot
occur.

HashPubHPKE  (32 bytes)
Binds the attestation to the mempool-encryption
public key that wallets must use for this epoch.
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REPORT_DATA  is computed as SHA256(nonce ∥ validatorPubKey ∥ currentProtoVersion ∥ 

HashPubHPKE) and inserted into the SEAMREPORT  before the quote is generated.

Verification path

1. zkVM attestation verifier

Confirms the quote signature and TCB status.

Exposes (validatorPubKey, currentProtoVersion, HashPubHPKE)  as public outputs in the 
SNARK’s journal.

2. Node Registry contract

Checks that currentProtoVersion  equals the governance-defined constant.

Stores (validatorPubKey, measurementHash, HashPubHPKE, attestedAt)  as an allowed validator 
record.

Rejects duplicates or proofs carrying stale protoVersion  values.

Block-production phase

Every roll-up block header is signed by validatorPrivKey .

Peers and the Canonical Bridge verify the signature against the public key on file.

If governance later bumps currentProtoVersion  or raises the minimum TCB, the Registry 
marks all prior records not allowed; validators must produce a new quote and proof 
before their signatures regain validity.

By binding the validator’s long-lived signing key and the protocol version directly into the 
attestation, t1 ensures that:

A rogue host cannot swap in a different private key after attestation.

Mixed software versions cannot coexist in the allowed validator set.

Each ordinary block remains lightweight—only a digital signature—while the heavy 
hardware proof appears precisely when the trust assumptions change.

Wallets and peers can enforce a single, attested mempool encryption key per epoch, 
eliminating replay attacks with stale ciphertexts.

3.6 Attestation Frequency and Amortization: A trade-off exists in determining the 
frequency of attestations. Triggering a fresh proof for every roll-up block—potentially as 
often as once per second—would overload the proving pipeline and inflate on-chain costs, 
because even an optimized zk-proof for attestation still incurs measurable latency and gas. 
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Conversely, attesting too infrequently weakens the real-time assurance that validator Trust 
Domains (TDs) remain compliant with the latest protocol and security posture.

In our design, we lean towards an event-driven attestation policy rather than a per-block 
cadence. A validator must generate a new zk-compressed attestation only when a security-
relevant transition occurs; between such events, it may sign an arbitrary number of blocks 
without re-proving. The policy is summarised below.

Trigger event Security purpose Contractual gatekeeper Effect on validator

Node onboarding /
re-join

Establishes first-time
authenticity (TDX
platform, approved
image, current TCB)

NodeRegistry.register()
requires fresh zk-proof

Node listed as
allowed only after
proof verifies

Protocol or
enclave-code
upgrade (new
image hash M′ ,
new protocol-
version tag)

Enforces
homogeneous logic
across all validators

Governance call updates
allowedMeasurement  and/or
currentProtoVersion

All validators must
re-attest with M′ ;
prior proofs invalid

TCB-level
revocation (e.g.,
microcode SVN
bump after
vulnerability
disclosure)

Removes trust in
unpatched
hardware/firmware

Governance call updates
minTCB ; zk-proof must reveal
TCB_SVN ≥ minTCB

Unpatched nodes
excluded until re-
attested

Emergency re-
validation
(suspected
compromise or key
misuse)

Provides rapid
containment without
waiting for scheduled
upgrades

Security-council multisig sets
requireReattestation(node)  flag

Node’s signatures
rejected until new
proof posted

REPORT_DATA
validation

Tie the quote to a
fresh nonce and the
current
HashPubHPKE ,

preventing replay and
proving the enclave is
using the authorised
mempool-encryption
key.

NodeRegistry.verifyProof()

If the hash matches,
the validator is
activated; if it does
not, the registration
transaction fails and
the node stays not
allowed.

Long-horizon
expiry (e.g.,

Slow-moving back-
stop in case no

NodeRegistry.isAllowed(node)
checks block.timestamp −
attestedAt ≤ maxAge

Validator must
refresh proof before
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maxAge = 12
months )

explicit trigger occurs deadline

No per-block proofs are emitted. Gas expenditure for zk-proof verification is amortised over 
weeks or months; steady-state block time is decoupled from proving latency. Key 
provisioning (bridge-signing keys, mempool-decryption keys) remains strictly gated on the 
most recent accepted attestation, so a validator that fails to re-attest after a trigger event 
automatically loses the cryptographic capability to influence state roots or decrypt private 
transactions.

Operationally, this yields:

1. Unconstrained throughput between events. Blocks are produced continuously; 
attestation overhead appears only at onboarding or upgrade epochs.

2. Predictable upgrade windows. Governance can schedule protocol upgrades or TCB 
bumps, knowing that validators must re-attest exactly once per event.

3. Bounded long-term risk. A maximum-age parameter enforces periodic renewal if no 
explicit triggers occur, maintaining a hard upper bound on attestation staleness.

This event-driven cadence retains real-time settlement—state roots still commit every block
—while ensuring that cryptographic proofs are generated precisely when the underlying trust 
assumptions change.

4. Encrypted Mempool and Key Provisioning
One of t1’s distinguishing features is its encrypted mempool. The idea is that the 
privacy‑sensitive payload of every pending transaction (recipient, value, calldata, etc.) is 
encrypted so that only the TEE-based Executors can decrypt and it. This provides strong 
MEV resistance: no outside entity (miners, validators, or even the sequencer operator’s non-
enclave self) can read the encrypted portion of the transaction payload to profit from ordering 
(e.g., no front-running or sandwich attacks by outsiders). The enclave will decrypt that 
payload in a secure environment and order them according to a fair policy (such as first-
come, first-served or a verifiable auction mechanism) without leaking their content 
beforehand. This section explains how we implement the encrypted mempool and securely 
manage the keys associated with it.

4.1  Mempool Encryption Scheme. t1 secures its mempool with a hybrid-encryption 
hierarchy built on the IETF HPKE standard.  At genesis, each Executor Trust Domain seals a 
32-byte root secret inside its enclave and deterministically derives a single, static HPKE key-
pair (Pub_HPKE, Priv_HPKE).  The public half, Pub_HPKE, is stored on-chain in the 
Node Registry next to the enclave’s attestation hash, so a dApp can fetch the key straight from 
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Ethereum without relying on any off-chain server. From the user’s point of view, this is 
seamless. Before triggering the wallet’s signing prompt, the dApp’s helper code fetches 
Pub_HPKE , caches it, performs a sub-millisecond X25519/HPKE encryption of the payload, 

and embeds the ciphertext into the transaction’s data  field. Only then does it invoke the 
wallet, which signs exactly those bytes. It samples a fresh 256-bit session key k_tx, encrypts 
k_tx with HPKE to form ciphertext₁, encrypts the transaction payload with AES-
GCM_{k_tx} to form ciphertext₂, concatenates the two, and submits the result as the 
transaction’s calldata. Header fields— from , nonce , gasLimit , maxFeePerGas , 
maxPriorityFeePerGas , and the v,r,s  signature—stay in plaintext so sequencers can rate‑limit 

spammers, enforce fee floors, and drop malformed blobs without decryption. The entire 
sequence happens in the background; the user experiences the familiar single click and, if 
anything, enjoys lower slippage because their order is no longer exposed to the public 
mempool. Inside every Executor enclave, the matching Priv_HPKE—re-derived locally 
from the same sealed root secret, never shipped across machines—unwraps k_tx, decrypts 
ciphertext₂, and executes the transaction.  Because all enclaves share the key pair by 
construction, any allowed node can process any pending transaction, yet a compromise of one 
enclave does not expose historical payloads once the network rotates the root secret (see 
Section 4.4).  The scheme, therefore, keeps symmetric-cipher performance for bulk data 
while eliminating the single global secret and enabling clean, epoch-level forward secrecy, all 
without altering the everyday wallet workflow.

4.2 Root-Secret Generation and Storage: The encrypted-mempool scheme hinges on a 32-
byte root_secret that must be born inside a TEE so that nobody—operator, cloud admin, or 
attackerever handles it in the clear. At genesis, the launch script boots a throw-away TDX 
Trust Domain whose only job is to call RDRAND , collect 32 bytes of entropy and seal the 
result to its own measurement. That TD then transmits the sealed blob to the first production 
Executor over an attested channel and terminates.

After its one-time creation the root_secret  must occasionally migrate—such as new validators, 
disaster recovery, or region failover—without ever leaving a hardware boundary. We reuse 
the attestation machinery that already proves code identity:

Join request. A fresh Executor TD comes online and posts a TDX quote proving it runs 
the authorised t1 image.

Mutual key exchange. A live Executor verifies the quote, checks governance allow-lists, 
then performs an ECDH whose public key was embedded in the newcomer’s 
REPORT_DATA .

Secret transfer. Over the AES-GCM tunnel established by ECDH, the live node sends 
the sealed root_secret—or, equivalently, re-wraps the raw bytes under the newcomer’s 
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Pub_HPKE. No plaintext ever crosses the host kernel.

Local derivation. The new TD unseals the blob, derives (Pub_HPKE, Priv_HPKE), and 
joins block production.

Unlike SGX, the current TDX firmware does not offer a built-in sealing key. Instead, we rely 
on open-source projects, which expose a per-CPU secret rooted in the hardware’s Chip-
Endorsement Key and bound to the TD’s MRTD . Every Executor links this provider and calls 
it to encrypt the root_secret  before persisting to disk; on reboot the same code path unseals the 
blob if—and only if—the measurement still matches. For portability across minor software 
upgrades, we can switch the seal policy to MRSIGNER, trading a slightly larger trust circle 
(anything signed by the t1 release key) for a smoother operator experience.

This two-layer approach—remote-attested hand-off for cross-machine moves, sealed storage 
for local restarts—keeps the root_secret  inside confidential memory from birth to retirement, 
while giving operators the flexibility they need to scale the validator set or recover from 
outages without touching any private HPKE material.

4.3 Enclave-Sealed Storage. While an Executor is live the root_secret  (and any short-lived 
HPKE private keys retained during the grace window) reside only in the enclave RAM. A 
power loss or host reboot, however, must not strand the network by erasing the secret. TDX 
itself offers no built-in EGETKEY  primitive like SGX, so we embed an open-source library that 
asks the TDX module for a CPU-unique “report key” that is cryptographically tied to the 
VM’s measurement ( MRTD ). That key feeds an AES-GCM wrapper, which writes an 
encrypted blob to the node’s SSD. On restart, the same path decrypts the file, but only if the 
measurement (or, when configured, the developer’s MRSIGNER value) still matches, thereby 
blocking replay on alien hardware. For operators who prefer looser coupling across minor 
software bumps, we expose a switch that seals to MRSIGNER instead of MRTD ; anything 
signed by the official t1 release key can then reopen the blob, simplifying blue-green 
upgrades while still preventing arbitrary binaries from unsealing it.

In practice, the secret is transmitted via two routes: live nodes pass it to newcomers through 
the attested ECDH channel described in Section 4.2, and every node also maintains its own 
sealed backup for crash recovery. The attested hand-off ensures that no plaintext ever touches 
storage, while the sealed file prevents re-asking peers after a routine reboot. Together, they 
give the network both safety and operational flexibility without diluting the guarantee that the 
root_secret  never leaves confidential memory.

4.4 Key Rotation. At a fixed cadence or at any moment, the security governance of an 
emergency, each allowed Trust Domain hashes its sealed root secret, derives a fresh HPKE 
key-pair, and co-signs an updateHPKE(pub, epoch)  call that places the new public key in the 
Node Registry.  The update becomes canonical as soon as two-thirds of the stake-weighted 
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Executors have signed.  Wallet software that monitors the contract sees no HPKE details; 
the dApp updates its cached Pub_HPKE , encrypts new payloads accordingly, and the 
wallet continues to sign opaque bytes.  To cover messages already in flight, every enclave 
retains the previous private key for a short, configurable grace period—three epochs by 
default—after which the old key is erased, preventing any later breach from revealing past 
traffic.  If a compromise is suspected before the scheduled boundary, the governance can 
invoke forceRotate , which truncates the current epoch and triggers the same ratchet and 
publication sequence at once.  Because all derivation occurs locally within the Trust Domains 
and only the public half is broadcast, the procedure transfers no private material across 
machines, requires no downtime, and preserves forward secrecy with a single deterministic 
step.

4.5 Interaction with MEV and Ordering Policies: With an encrypted mempool, users are 
protected from external frontrunning. The enclave could still theoretically reorder transactions 
arbitrarily since it decrypts them. To ensure fairness, we have to design the ordering policy 
inside the enclave code (which is open source, so anyone can audit how ordering is done). 
One policy is FIFO by arrival time (the host could delay delivering some tx to the enclave, 
but if the host is malicious in that way, that might be detectable via attestation of time or via 
multiple enclaves cross-checking the order of receipts). Another policy might involve a 
sealed-bid auction (but then the enclave would see bids – perhaps it could output a Merkle 
commitment to bids for transparency). These details are part of a broader rollup protocol 
design and are not specific to TEE; however, the key point is that the TEE ensures the chosen 
policy is enforced, as the operator can’t manipulate transactions outside the enclave’s logic. 

4.6 Protecting Key Confidentiality: If the root secret were exposed, an adversary could 
decrypt the encrypted payloads of all pending transactions and exploit MEV opportunities or 
user secrets. Therefore, we treat root_secret  with the highest level of secrecy. It never leaves 
enclave memory unencrypted. When stored or transmitted, it’s always under encryption tied 
to enclave identities. Also, note that even if someone later obtains a previously used 
Priv_HPKE  key (or the root_secret  from which it was derived), they cannot retroactively steal 

value from already executed transactions; however, they may decrypt any mempool 
ciphertexts still within the retentionWindow , potentially revealing historical user intent or 
sensitive payloads prior to rotation. The main threat is forward-looking: if an enclave’s 
Priv_HPKE  key or its underlying root_secret  is compromised while allowed, the encrypted 

mempool becomes readable to the adversary for the duration of that key’s validity window.

In the event of suspected leakage, the protocol should immediately rotate the key. One 
possible detection method is to notice strange MEV-like patterns that suggest someone can 
see inside the mempool; although that’s not foolproof, it could trigger a precautionary 
rotation.
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To complement encryption, the t1 enclave design might also incorporate threshold encryption 
or multi-party enclaves to decentralize the mempool control. For instance, multiple enclaves 
could each hold a share of the decryption key, requiring a quorum to decrypt the data. 
However, that moves into complex territory of distributed TEEs and is beyond our initial 
scope. Our current design assumes a single enclave (or a few in allowed-allowed redundancy) 
holds the key.

4.7 Summary of Key Provisioning. In summary, each enclave generates or receives a sealed 
root_secret  inside a TEE, from which it derives an HPKE key pair used to decrypt incoming 

transactions. The root_secret  is transferred only via attested channels and sealed to disk with 
TDX-based sealing mechanisms when not in use. Periodic key rotation—triggered either on 
schedule or by governance—ensures forward secrecy. This architecture ensures that an 
eavesdropper, sequencer host, or even an L1 miner cannot access rollup transactions before 
execution, thereby greatly reducing exploitable MEV. It also supports privacy-preserving 
applications: if a transaction contains sensitive data, keeping it encrypted until the moment of 
execution provides confidentiality similar to a layer-2 shielded poo,though, as designed, all 
data becomes public once executed.

With the mempool confidentiality handled, we now discuss how the enclaves control who can 
execute and upgrade the protocol, i.e., enclave-authenticated governance and operations.

5. Enclave-Keyed Access Control and Upgrades
In a decentralized protocol, we normally rely on cryptographic signatures from externally 
owned accounts or multisigs for administrative actions (like upgrading contracts or changing 
parameters). In t1, certain actions are instead gated by enclave identities. This section 
outlines how enclaves use their own keys to assert privileges and how this mechanism is used 
for secure upgrades and operation rights within the rollup.

5.1 Enclave Identity Keys: Every Executor enclave in t1 generates an internal asymmetric 
key pair upon initialization (if not already generated and sealed from a prior run). This key 
pair (let’s call it Enclave Signing Key, with private part SK_enc and public part PK_enc) is 
used to sign important messages, such as rollup block proposals or votes on upgrades. We tie 
PK_enc to the enclave’s identity through remote attestation: specifically, we include a hash of 
PK_enc in the attestation REPORT_DATA  when the enclave attests. Thus, the attestation quote 
essentially states “This enclave with measurement M_e holds a key whose hash is 
H(PK_enc)”. Given that the code inside the enclave is known, we can trust that this key was 
generated internally, and SK_enc never leaves the enclave. The verifier (via the zk-proof) will 
obtain H(PK_enc) as a public output. Now, on-chain or off-chain systems can recognize that 
any signature matching PK_enc (or H(PK_enc)) corresponds to an authentic enclave of the 
expected code.
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In practice, we maintain an allowlist of enclave public keys that are currently allowed in the 
protocol. For example, the rollup’s L1 contract can hold a list of approved enclave PKs (or 
their hashes) along with maybe an expiry or version. When a sequencer posts a new block, 
the contract verifies that the header is signed by a public key that is marked allowed in 
NodeRegistry; that allowed status derives from the most recent attestation round. This is a 
second layer of control: even if an attacker somehow got an attestation from some rogue 
enclave code (with a different measurement that might slip by if verification criteria were 
loosened), they wouldn’t have an approved PK. Conversely, if we want to remove a node’s 
privileges (say the node operator misbehaves), we could take their enclave’s PK off the 
allowlist (by governance’s decision), effectively preventing that node from participating 
further, even if their enclave is still technically valid. This allowlist is akin to a set of 
authorized sequencers, but authorization is tied to running the correct enclave. It could be 
used in a decentralized sequencer set or in a permissioned phase of the rollup.

5.2 Signing of Rollup Blocks: When an enclave produces a roll-up block, it signs the batch 
with SK_enc.  The attestation evidence was supplied earlier, at the node’s most recent 
attestation round, and therefore is not regenerated per block. This signature covers the block 
contents and maybe the L1 epoch or other context. Off-chain, this signature is used by other 
validators or mirrors of the rollup to validate that the block indeed came from an enclave 
(with identity PK_enc). On-chain verification relies on ecrecover  of the block signature and a 
lookup in NodeRegistry ; no fresh attestation proof accompanies the block.

In any case, the signature is useful for off-chain and audit logs, as well as for any interaction 
where the enclave needs to authenticate itself beyond the attestation. For example, if the 
enclave submits a transaction to Ethereum outside the normal channel, it could include a 
signature that a watchdog can verify against the known PK_enc.

5.3 Secure Protocol Upgrades. Upgrading t1 touches two trust anchors at once: the enclave 
measurement that attestation checks, and the mempool-encryption root secret whose hash is 
bound into every quote.  The process, therefore, walks through five tightly sequenced steps:

1. Publish the new image. Developers tag the patched enclave build, reproduce it under 
deterministic CI, and disclose the resulting measurement M′. Auditors verify the hash, the 
changelog, and that the code will re-derive the root secret exactly as the previous version 
did.

2. Governance whitelists M′. A multisig (or token vote, once live) calls the L1 registry to 
add M′ to allowedMeasurements  and bumps currentProtoVersion . In the same transaction, it 
primes the registry to accept a fresh HashPubHPKE , signalling that wallets should expect a 
key rotation as soon as ≥ 66 % of the stake has moved to the new binary.
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3. Dual-running phase. Operators boot the upgraded TDs. Each new enclave (a) fetches 
the latest root-secret blob from its predecessor over the attested ECDH channel, or—if 
migrating to new hardware—requests it from any allowed peer; (b) derives the identical 
Pub_HPKE; and (c) submits an attestation whose REPORT_DATA  now contains 
HashPubHPKE  and protoVersion + 1. During this overlap, both generations may co-

produce blocks because the registry still treats the old measurement as allowed.

4. Canonical key update. When two-thirds of the upgraded TDs have attested, they co-sign 
updateHPKE(pub, epoch) ; the contract records the new public key and emits the event that 

tells wallets to encrypt with it from the next block onward. Legacy enclaves retain the 
previous private key in RAM for only three epochs by default, allowing them to 
complete the decryption of transactions already in flight.

5. Retire the old image. Governance now removes M_old from the allow-list. Any enclave 
that has not upgraded will have its attestation flagged as “not allowed”, and its signatures 
will be rejected by both the Node Registry and the Canonical Bridge. If the code change 
altered the state-transition function, the height at which M′ becomes exclusive is chosen 
so that every honest node can replay and confirm the hand-off deterministically.

Because each step is authenticated either by the TD’s attested key or by an on-chain vote, no 
operator can sneak in an unreviewed binary; conversely, honest nodes experience zero 
downtime and never move private material across an untrusted channel.

5.4 Enclave Governance and Admin Actions: Beyond code releases, several levers must 
change only with clear, cryptographically-verifiable consent from the operators who are 
actually running attested TDs.  Each enclave, therefore, holds a long-lived governance 
signing key, and the Node Registry treats that key as a stake-weighted voter once its 
attestation is allowed.  When a motion arises, the contract opens a governance slot (identified 
by a hash of the action’s calldata and deadline).  Enclaves that approve the action sign the slot 
hash and submit vote(signature) ; the contract tallies compressed BLS signatures until the 
threshold—two-thirds of bonded stake by default—is reached, at which point it executes the 
queued call atomically.

Because every signature originates from a TD whose measurement and HashPubHPKE  were 
verified in the most recent attestation, the mechanism guarantees that only nodes running the 
authorised software—and therefore subject to the same slashing and key-rotation logic—can 
steer the protocol.  An operator who shuts down their enclave (or never upgrades) loses their 
vote automatically; an attacker who merely controls an EOA cannot vote unless they also 
compromise a TD and re-attest, which the allow-list rules would block.  In practice, the 
system already uses this channel for routine root-secret rotations: the ratchet described in § 
4.4 only fires once the updateHPKE(pub, epoch)  the call itself has gathered the requisite enclave 
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quorum and passed on-chain.  The same pattern applies to pausing the bridge, raising minTCB , 
or switching to a new SNARK verifier—providing unified, hardware-backed governance 
without relying on off-chain coordination.

5.5 Administrator Key within Enclave. It’s generally a good practice not to hard-code any 
secret keys (like an admin key) inside the enclave binary, as that would eventually leak. 
Instead, any admin or governance keys that need to control the enclave (e.g., tell it to 
upgrade, or emergency halt) should be injected at startup as configuration that is measured 
and therefore covered by the enclave’s attestation. Specifically, the binary ships only with 
the public keys of the on-chain governance quorum described in Section 5.4; no private 
governance material ever resides in the TD. 
For instance, if the community multisig wants to pause the roll-up after detecting an exploit, it
signs a PAUSE  command and submits it on-chain.  The enclaves retrieve the call, verify the 
signature against the embedded governance public key set, and—if valid—stop processing 
new transactions and enter a safe mode.  This gate ensures that an attacker controlling the 
host OS cannot inject unauthorised commands, and it keeps the enclave’s critical-path secrets 
limited to its own identity key and the HPKE-derived root-secret hierarchy.

5.6 Open Source and Reproducibility Considerations. Because enclaves wield significant 
power—holding keys, enforcing upgrades, and ratcheting the root-secret-derived HPKE 
hierarchy—the community must be able to audit every line of code.  t1 enclaves are therefore 
built from fully open-source repositories under a reproducible build pipeline.  The key-
management logic, encrypted-mempool implementation, root-secret derivation, and admin 
controls are all visible. Anyone can rebuild the binary, confirm that its hash (and thus the 
attested measurement and HashPubHPKE ) matches the published reference, and rule out hidden 
back-doors or exfiltration paths.  This transparency is what makes enclave-centric governance 
acceptable in a public network context: if an enclave misbehaves, it is either a code bug—
addressed by patching and re-attestation—or a TEE breach, which immediately triggers the 
TCB-recovery measures outlined in Section 8.

5.7 Lifecycle of an Enclave Instance: To tie together sections 2–5, here’s an example 
lifecycle for a single TD node:

Launch. The operator boots the node; the TDX module measures and instantiates the 
TD. Inside it, the software either generates a fresh identity key pair PK_enc / SK_enc  or 
unseals one from a prior run.

Initial attestation & registration. The enclave constructs a quote whose REPORT_DATA = 

SHA-256(nonce ∥ PK_enc ∥ currentProtoVersion ∥ HashPubHPKE)  and feeds that quote into the zk-
attestation prover. The resulting proof is submitted to the L1 NodeRegistry , which records 
PK_enc , measurementHash , and HashPubHPKE  as allowed once the proof is verified.
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Root-secret provisioning. If the TD was restarted locally, it simply unseals its 
previously stored 32-byte root_secret ; otherwise, it opens an attested channel to a live 
peer, proves its measurement, and receives an encrypted transfer of root_secret . From that 
secret it deterministically derives (Pub_HPKE, Priv_HPKE)  and immediately seals the secret 
back to disk using a Gramine-style TDX sealing key tied to the enclave signer.

Normal operation. The enclave accepts ciphertexts ciphertext₁ ‖ ciphertext₂  from users, 
unwraps the session key with Priv_HPKE , decrypts the payload, executes the transaction 
batch, and signs the resulting L2 block with SK_enc . Only the lightweight block signature
is posted on each L1 commit; no new quote is required.

Upgrade. When governance approves a new binary, the operator halts the TD, spawns a 
fresh TD running the new measurement, and transfers root_secret  (plus any other state) 
through the same attested channel. The new TD attests, publishes its proof, and becomes 
primary; the old TD retires once its final duties are complete.

Shutdown. To exit, the enclave may send a signed Deactivate call to NodeRegistry , wipe 
root_secret  and other secrets from RAM, and optionally destroy its sealed blobs. If future 

restarts are planned, it can instead keep the sealed files; TDX scrubs memory on power-
off in either case.

Throughout this lifecycle, the root_secret never appears outside an attested channel or sealed 
blob, and every block’s provenance can be traced via PK_enc  and HashPubHPKE —back to the 
validator’s most recent, on-chain-verified attestation.

At this juncture, we have a complete picture of how t1 uses TEEs for execution, attestation, 
mempool privacy, and control. We now address some advanced topics and concerns that have 
been raised in peer discussions to clarify our security posture and the limits of this approach.

6. Secure Cross-Chain interactions
ERC-7683 Intents serve here as a practical, near-term example of secure cross-chain 
transactions, providing a standard way to express and fulfill user requests across different 
blockchains. This is not unique to rollups or L2 networks—intents can bridge any disparate 
chains, from Ethereum mainnet to sidechains, rollups, or appchains. Under the ERC-7683 
model, a user’s desired outcome is encapsulated in an intent message (conforming to ERC-
7683) that specifies what the user wants to achieve on a destination chain, without prescribing 
how to achieve it. This abstraction enables a seamless cross-chain experience by decoupling 
the user’s intent from the underlying execution path.
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Why single out intents? They are simply a convenient, standards-based subset of cross-chain 
calls that exists today. The very same TEE-observer pattern that we shall present generalizes 
to any verifiable x-chain transaction—asset transfers, oracle reads, governance votes—so 
long as the enclave co-locates a full node that can fetch state proofs.

6.1 Execution on the Destination Chain. When a cross-chain intent is opened, the user locks 
or escrows their assets on the source (origin) chain in a Settlement Contract. A third-party 
Filler then fulfills the intent on the destination chain by executing the required transactions 
there using their own liquidity. Note that all intent execution occurs on-chain on the 
destination network, not off-chain. The secure off-chain component in our architecture is 
limited to verification: a trusted domain observer confirms that the intent’s fill actually 
occurred on the destination chain as specified. In other words, the trust domain’s role is to 
validate the outcome (e.g. that the user received the expected funds or tokens on the 
destination chain) by checking on-chain state, not to perform the swap or action itself. The 
integrity of this verification step is ensured by running it within a secure trust domain, which 
guarantees that the observation cannot be tampered with and adheres to the intended logic.

6.2 Enclave Verification and Escrow Release. Once the trust domain confirms that the 
intent was filled on the destination chain (for example, detecting that the designated swap or 
contract call succeeded and the desired outcome was delivered), it produces an attestation of 
this event. This attestation is a signed, tamper-proof claim that “Intent X was fulfilled on 
Chain B at block Y with result Z.” The trust domain appends this attestation to a Merkle trie 
on the origin chain's settlement contract, allowing anyone to post a Merkle inclusion proof to 
be verified against the trie, and if valid, releases the escrowed funds on the origin chain to the 
appropriate party. In a typical scenario, the filler who executed the intent on the destination 
chain is paid out from the user’s deposit on the origin chain as a reward for their service. By 
structuring the payment as a release of the user’s escrow, the system remains generalized – 
any origin chain can act as the escrow venue, not just a specific platform. The Settlement 
System on the origin chain holds the user’s funds, verifies the fulfillment via the trust 
domain’s attestation, and then unlocks the funds to compensate the filler or complete the 
intent’s settlement. This general design makes the payment logic flexible: the origin chain 
contract handles payouts, allowing the model to be applied to various networks and avoiding 
hardcoding to a particular bridge or rollup.

6.3 Trust Domain of Observers. Our implementation employs secure trust domains as 
rollup observers (or more generally, cross-chain state observers) that monitor the destination 
chains for intent fulfillment. For simplicity and security, we chose to run all observer enclaves 
within a single trust domain – meaning they share a common attestation identity and trust 
root. This design choice enables a unified trust assumption for all chain observers and 
streamlines the management of enclave keys. However, this is not a strict requirement of 
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the architecture. It is an implementation decision rather than a protocol mandate. Alternate 
deployments could isolate observers per chain or use multiple independent trust domains, as 
long as each trust domain’s attestation can be verified on the origin chain. The ERC-7683 
intent standard itself does not dictate how many trust domains must be used; it only requires 
that the mechanism observing and verifying the fill be trusted by the settlement contract. In 
summary, all observers may run under one trust domain for convenience; however, it is 
equally possible to have a distributed set of verifiers with separate trust roots, provided they 
meet the same security and authenticity criteria.

6.4 Deterministic Receipt Commitments. Each trust domain verification produces a 
commitment to the on-chain evidence of the intent’s fulfillment. Specifically, the trust 
domain will perform a deterministic state query against the destination chain to gather proof 
of the fill. The trust domain then computes a hash over the full context and result of this 
query, including:

the target contract address queried on the destination chain,

the function signature (or specific event signature) and any input parameters used for the 
query,

the block number (and/or block hash) at which the query was executed, and

the resulting output or receipt data returned by that query.

This hashed commitment uniquely and deterministically represents the outcome of the intent 
at that point in the destination chain’s state. Because the commitment covers all relevant 
inputs and outputs of the query, any external verifier with access to the destination chain 
can replicate the exact same query (using the same contract, function, parameters, and block 
number) and should obtain the identical result. They can then hash those results in the same 
way to confirm that it matches the enclave’s reported commitment. In this manner, the 
enclave’s cryptographic commitment to a block’s receipts or state ensures consistency and 
auditability: if two independent parties check the same on-chain facts, they will derive the 
same commitment hash. This property enables transparency and trust, as anyone can verify 
that the enclave did not forge or alter the fill evidence – the attested result is objectively 
anchored to the destination chain’s publicly verifiable state.

On-Chain Settlement Workflow: The origin-chain settlement contract is designed to 
securely accept the enclave’s attestation and finalize the fulfillment of intent. The workflow is 
as follows:

1. Attestation Submission: The enclave (operating off-chain in the trusted environment) 
submits its signed attestation to the origin chain’s settlement contract. This attestation 
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contains the enclave’s identity (e.g., an enclave public key or certificate), the hash of the 
query result, and the associated commitment data as described above.

2. Enclave Verification: The settlement contract checks the signature and identity against a 
registry of recognized trust domains. Each authorized domain is mapped to a known 
signing account or public key. The contract verifies that the attestation’s signer 
matches a valid enclave and rejects any submission from unknown or untrusted sources. 
This ensures that only attested observations from approved secure enclaves can trigger a 
settlement.

3. Recording Results in Merkle Trie: Upon successful verification of the enclave 
signature, the contract records the reported result in an append-only log structure on-
chain. In particular, the result (or its hash) is inserted as a new leaf in a Merkle trie 
maintained by the settlement contract. Each attested fill result thus becomes a part of an 
ever-growing Merkle tree of fulfilled intents. After insertion, the contract updates the 
stored Merkle root to reflect the new leaf.

4. Public Root and Inclusion Proofs: The updated Merkle root is exposed by the contract 
(e.g. stored in contract state or emitted in an event), allowing anyone external to obtain it. 
Because each file’s data is now represented in the Merkle tree, any party can later prove 
the inclusion of a specific intent fulfillment by presenting a standard Merkle proof (a 
sequence of sibling hashes) against the publicly available root. In essence, the contract’s 
Merkle trie serves as an auditable ledger of all verified cross-chain fills, allowing 
external auditors or other smart contracts to verify that a particular cross-chain outcome 
was indeed confirmed and recorded.

With this settlement process, the origin chain smart contract not only releases funds but also 
creates a tamper-evident record of the cross-chain intent fulfillment. The enclaves output the 
hash of the query results (plus the contextual commitment) as a signed package, and the on-
chain logic ties this into an immutable log (via the Merkle root). This design makes the 
fulfillment hardware verifiable and easily auditable, allowing observers to independently 
confirm the destination chain outcome and its proper settlement on the origin chain. Overall, 
this flow underpins all cross-chain transactions we expect t1 to support: ERC-7683 intents 
today and the broader class of verifiable x-chain calls we foresee as new standards emerge.

Having covered cross-chain operations, we now turn to a broader discussion on security 
considerations, design rationale, and addressing potential academic critiques in Section 7.

7. Security Discussion and Design Refinements
In developing t1’s TEE-based architecture, we carefully considered the feedback and 
concerns from the security research community. This section revisits some nuanced issues: 
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the distinction between hardware attestation and full cryptographic verification, the exact 
guarantees of TDX’s isolation (and misuse of terminology), the role of nonces in attestation, 
and the need for reproducible builds and transparency. We also address how our design 
balances trust and decentralization, acknowledging the inherent reliance on Intel and how we 
mitigate that.

7.1 Attestation vs. Verifiable Computation: A common point of confusion is the phrase 
“cryptographically verified execution” in the context of TEEs. It’s crucial to clarify that 
remote attestation is not equivalent to a zkSNARK proof of execution. Remote attestation 
provides a cryptographic identity check proving that the output or message originated from a 
piece of software with a particular hash, running in a secure enclave on genuine hardware. It 
does not prove that the software’s output is correct relative to some specification – we trust 
the software to be correct. In contrast, a system like a zk-rollup generates a proof that the new 
state is mathematically consistent with the old state and the transactions, independent of who 
computed it. In t1, we combine these approaches: attestation gives a faster but somewhat 
trust-based assurance (trusting the hardware and code), while eventually, a ZKP checkpoint, 
via on-demand or periodic ZKP, can give a trustless mathematical guarantee. By including 
both, we aim for the best of both worlds: immediate liveness and decent security from TEEs, 
with eventual correctness proofs from zk-provers as a backstop.

ℹ️ Insurance-Fund Guard-Rail.
To cap the economic risk that accrues between zk-proof checkpoints, governance 
escrows an on-chain insurance fund.

Insurance assumption: the fund is sized to cover the worst-case loss if TEEs 
were to fail.

Cumulative-risk accounting: every block header reports epochValue  (value 
moved in that block) and cumValueSinceZKP  (running total since the last zk 
checkpoint). Validators must pause value-bearing blocks—and require a zk-
SNARK proof that resets cumValueSinceZKP  to 0—before the running total can 
exceed the fund.

Further specification: the detailed logic will be described in a follow-up 
document.

We refrain from stating that the enclaves provide “verifiable computation” in the strict sense. 
Instead, we say they provide “verified environment execution.” The environment (the enclave 
identity) is verified, which implies (given we trust the code) that the computation was as 
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intended. There is a subtle but important difference: if the code has a bug or the hardware is 
compromised, the enclave could produce a wrong result and still attest correctly (the 
attestation doesn’t catch logical errors or malicious logic). This is why open source and 
auditing of the enclave code is vital, and why a fallback like fraud proofs or zk proofs can 
catch such errors. In academic terms, our approach is an instance of a hybrid model: not 
purely cryptographic truth, but hardware-rooted truth. It’s akin to a Byzantine-fault-tolerant 
consensus protocol where the honest-majority assumption is replaced by an honest-hardware 
(or honest-majority-of-hardware) assumption for the short term.

7.2 “Cryptographic Isolation” vs. Hardware Isolation: In earlier drafts, we (and others) 
sometimes used the term cryptographic isolation to describe how enclaves protect data. To be 
precise, enclaves like TDX use encryption and integrity checks (which are cryptographic 
mechanisms) to isolate memory, but the overall isolation is enforced by hardware logic (the 
CPU will not execute certain instructions outside SEAM, etc.). It’s not that there’s a 
cryptographic proof exchanged at runtime between CPU and OS – rather, the CPU is built to 
refuse access. The only cryptographic element visible externally is the attestation signature 
and the encrypted memory. So, a more accurate description is hardware-enforced isolation 
with cryptographic memory protection. We have adjusted our terminology accordingly. 
Where the litepaper might have said “cryptographically isolated Executor”, we now say 
“TDX-isolated Executor” or simply emphasize the hardware trust domain. This prevents 
readers from assuming we mean something like MPC or threshold cryptography, isolating the 
computation.

7.3 Role of REPORT_DATA  Nonces in Attestation: We have implemented robust nonce usage 
in our RA protocol, as described in Section 3. The enclave’s attestation code will always 
expect a 64-byte random challenge from the verifier (or derive one from context) and place a 
hash of it into the report before quoting. The importance of this cannot be overstated: without 
it, an attacker could record a quote from an enclave and later replay it to deceive the verifier 
into believing that a fresh operation had occurred. Intel SGX/TDX attestation itself does not 
include an implicit nonce – it relies on protocols to do so. The literature is clear on this point, 
and we abide by best practices. The attestation zk-circuit explicitly takes the expected nonce 
as an input and verifies it matches the quote’s report_data . Moreover, we tie the nonce to the 
specific attestation round (node onboarding, protocol-version upgrade, or TCB update) so that 
even if someone replayed an old quote with the same nonce, the surrounding context would 
differ and the proof would be rejected. This provides replay protection for attestation.

7.4 Binary Measurements and Reproducible Builds: Because attestation works at the 
binary level (measuring the exact bytes loaded into the enclave), it raises the issue of how 
stakeholders can trust that those bytes correspond to the audited source code. If the project 
were closed-source, one would have to blindly trust the team about the measurement. 
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However, t1’s enclave code is fully open-source, and we commit to enabling reproducible 
builds. Reproducible (deterministic) builds mean that anyone can compile the source (with a 
specified compiler version, flags, etc.) and obtain the exact same binary bits and thus the 
same hash. This is non-trivial to achieve, especially for complex projects, but tools like Nix, 
Bazel, or Guix can help pin environments. As noted by Trail of Bits researchers, reproducible 
builds “complete the trust chain” for SGX enclaves; we apply the same principle for TDX 
enclaves. Our build pipeline uses a containerized environment with fixed dependencies to 
ensure deterministic output. We also provide the calculated measurement (hash) in the 
documentation for each release. During attestation verification, the expected measurement is 
checked; thus, if someone tampers with the code or compiles it differently, it won’t match, 
and the attestation will fail. Community members are encouraged to rebuild the enclave from 
source to verify the official measurement. This approach is similar to how Etherscan verifies 
on-chain bytecode by recompiling Solidity – here we do it for off-chain enclave binaries. 
Reproducibility and open source together enable open auditability of the enclave. There 
should be no hidden code running that has not been reviewed.

7.5 Open-Source Requirement for Security: We want to stress that the security of the t1 
enclave model is only as good as the scrutiny it receives. We choose Intel TDX for hardware 
security, but the software we run inside must be bug-free (to a high degree) and free of 
malicious logic. By open-sourcing it, we allow the community to inspect everything, from 
how keys are handled to how state transition logic is implemented. This contrasts with 
proprietary enclaves in some systems where users must trust the company’s attestation 
blindly. In fact, one can argue that in a decentralized context, closed-source enclaves are 
unacceptable because they could attest to being “some allowed code” but that code might be 
doing something engage in malicious or undisclosed behaviour that isn’t apparent. By open-
sourcing and reproducibly building, we ensure that “allowed code” is exactly the code 
everyone agreed on.

7.6 Trust in Intel and Single-Source Dependency: Perhaps the most significant overarching 
concern is our reliance on Intel (or any single hardware vendor). The trust model of t1 
includes trusting that Intel’s implementation of TDX is secure and that Intel (and its 
manufacturing process) did not introduce backdoors. This is a centralized trust assumption, 
which blockchain purists rightly point out as a weakness. If Intel’s secret key for signing 
attestation certificates were compromised, an attacker could potentially fake enclave quotes 
(though Intel would likely revoke and replace keys in that scenario). If a microcode bug 
allows an escape from the enclave or the extraction of secrets, the entire integrity and 
confidentiality could be compromised. These are not hypothetical – SGX saw numerous side-
channel attacks and a few instances of key leakage (like the infamous SGX private key leak 
via SGAxe). Thus, we confront the reality: TEEs are not invulnerable, and their failure is a 
single point of failure for all relying relying on them.
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We address this in several ways:

Multi-layer security: As mentioned, a Remote Attestation proof can catch erroneous 
state updates even if an enclave acts maliciously provided the code isn’t colluding with 
the attacker. In other words, if the hardware is compromised to just output a wrong state, 
a zk proof (if it recomputes the state) would not accept it. However, if the hardware is 
compromised in a way that it can also fake the zk proof or if we haven’t integrated zk 
proofs yet, then that layer isn’t there. But having the design slot for it means eventually 
we rely less on the TEE for correctness, using it mainly for liveness and data availability.

TCB recovery (see Section 8): If Intel announces a vulnerability, we have a protocol in 
place to recover trust, which usually means patching the microcode or software and then 
re-attesting so everyone knows the new version is secure. In extreme cases, if TEEs are 
broken, the protocol could switch to an alternative security mode (like purely optimistic 
with fraud proofs, or halting until zk-proofs are ready).

Diversity of TEEs: While currently we use Intel TDX, in the future the protocol could 
support multiple TEE implementations in parallel (e.g., AMD SEV-SNP, or ARM’s 
Realms, or even different vendors like AWS Nitro enclaves). If we had two different 
TEEs, one could require attestation from both – this way it’s less likely both get broken 
at the same time. This is complex but not impossible: it means writing our software to 
target multiple enclave types and then requiring a threshold of them to sign off on results 
(some sort of multi-TEE consensus). This was hinted at in multi-prover approaches.

Decentralization vs Trust Trade-off: We openly acknowledge that introducing TEEs is 
a trade-off: we gain speed and privacy, but we introduce a trust dependency on hardware 
vendors and the security of complex CPUs. We mitigate it, and we believe the trade-off is 
worthwhile with safeguards, but it must be evaluated continuously. If at any point the 
risk outweighs the benefit, the community must be ready to fall back to a safer (if slower) 
fully trustless mode.

Transparency about TEE status: We will maintain a transparent policy of tracking 
known TEE vulnerabilities and their impact on t1. If an issue like a new side-channel is 
discovered that affects our enclave’s ability to keep secrets, we may temporarily disable 
certain features (like the partially encrypted mempool) until a patch or mitigation is in 
place. The system’s design is flexible enough to degrade gracefully if confidentiality is 
lost (it would be unfortunate for MEV, but it wouldn’t immediately break correctness). If 
integrity is lost (i.e., enclaves can be forged), that is more severe, likely leading to a 
fallback to the zero-knowledge proof-based protocol.

7.7 Side Channels and “Cryptographic Isolation” Limits: A subtle point: TEEs like 
SGX/TDX do not inherently protect against all side-channel leaks, especially timing or cache-
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based. Many SGX attacks exploited the shared CPU cache or branch predictors to infer 
enclave data. Intel TDX, by virtue of isolating a full VM, might be able to mitigate some of 
these by not sharing cores between TD and other VMs (one can pin the TD to cores, etc.). But 
some leakage might still occur (e.g., power analysis if one had physical access, or 
sophisticated memory access pattern analysis). In our context, 
side-channel leakage could potentially reveal the root_secret  or derived HPKE private key 
( Priv_HPKE ) used to decrypt pending transactions, if the adversary can run spy processes on 
the same host. We assume our threat model does not include physical attacks (we assume the 
hosting environment is secure from physical tampering, focusing on remote software attacks). 
We also assume that major side channels will be patched by Intel when discovered (with 
microcode or guidance like disabling hyperthreading). We can incorporate best practices, 
such as ensuring the enclave VM is scheduled in a way that minimizes sharing with untrusted 
processes and using constant-time cryptography in enclave code. Nonetheless, it’s an area 
where “isolation” is not absolute. We use the term “isolated” to mean logically and memory 
isolated, but not necessarily side-channel isolated. The phrase “cryptographic isolation” might 
mislead one to think that the isolation is as perfect as  encryption, where nothing leaks; in 
reality, some information (such as access patterns) could still leak. Thus, we precisely define 
isolation as follows: the enclave’s memory contents and CPU state cannot be directly read or 
written by any other software; any attempt to do so would yield only encrypted data. This is 
true, but indirect information could still be gleaned.

7.8 Reproducibility and Binary Transparency in Practice: A challenge with reproducible 
builds is making sure the exact environment can be replicated by third parties. We might use 
Nix with pinned dependencies, publishing a Docker image with a specific hash that builds the 
enclave. If multiple independent parties run the same measurement and obtain the same 
result, confidence increases that the binary is indeed from the published source. Signal and 
MobileCoin have done similar for their SGX enclaves. We’ll also explore using attestation in 
the build process itself (for example, building inside an enclave to attest that the build was 
done on a clean system). That starts to overlap with concepts like “trustworthy build systems” 
but is beyond scope.

7.9 Summarizing the Trust Model: At the end of the day, the security of t1’s TEE approach 
rests on:

Trusting Intel (or any vendor providing the TEE) not to have included a hardware-level 
proprietary backdoor and to make best efforts to secure the hardware.

Trusting our enclave code to be correct and secure (which we bolster via open audit and 
formal methods if possible).
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Trusting that ZKPs are mathematically sound and complete, that is, that the underlying 
algorithms are bug free.

Accepting that in the interim between execution and zk-proof, the enclave results are 
probabilistically secure (based on these trusts) rather than cryptographically guaranteed 
in the absolute sense.

Relying on on-chain enforcement (zk verification of attestation) to remove the need to 
trust any off-chain party’s word about the enclave status.

This is a trusted‑hardware assumption combined with a cryptographic proof for authentication
and—potentially—periodic zero‑knowledge proofs of computation. This is strictly weaker 
than a pure zk‑rollup in security, but in practice stronger than an optimistic rollup on the 
dimensions of bounded risk and time‑to‑finality, especially due to the periodic ZKP 
checkpoints that cap interim exposure and remove challenge‑period latency. We believe this 
hybrid can be practical and secure for many use‑cases, at least until other advances allow 
comparable performance with full trustlessness.

With these considerations addressed, we proceed to Section 8, which outlines the steps taken 
when issues arise. Specifically, we outline how we recover from TEE vulnerabilities or need 
to patch the system.

8. TCB Recovery and Security Patching
No security system is static; over time, vulnerabilities may be discovered, and new attack 
vectors unveiled. In a blockchain context, responding to such events in a coordinated and 
secure manner is crucial to maintain user trust and asset safety. This section outlines how t1 
handles Trusted Computing Base (TCB) recovery, i.e., updating and re-establishing trust in 
the TEE platform after a vulnerability, as well as how we manage key material during such 
events.

8.1 Understanding TCB and Vulnerabilities: For our purposes, the TCB (Trusted 
Computing Base) includes the CPU hardware, microcode/firmware, the TDX module, and the 
enclave software itself. A TEE vulnerability could exist at any of those layers:

Hardware/Microcode: e.g., a CPU bug that allows an attack to extract enclave keys or 
bypass memory encryption.

TDX Module/Security Version Number (SVN): if a flaw is found in the TDX 
implementation, Intel may issue a microcode update that raises the TDX SVN and fixes 
it.

Enclave Software: a bug in our code that could be exploited (like a buffer overflow or a 
logical bug that allows someone to inject a fake attestation).
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When such a vulnerability is discovered, especially in hardware or TDX, Intel will perform a 
TCB recovery procedure. This usually means:

Releasing patches (microcode updates or new versions of the quoting enclave, etc.) that 
fix the vulnerability.

Possibly revoking old attestation keys or certifying new ones if the old ones are 
considered compromised.

Intel’s attestation infrastructure has a notion of TCB levels (as seen in the quote data and 
collateral). Verifiers can set a policy to reject attestations below a certain TCB level once an 
issue is public. For example, after a vulnerability disclosure, Intel’s PCS (Provisioning 
Certification Service) might start marking quotes from unpatched platforms as “OutOfDate” 
in the TCB status, and eventually add the affected CPU’s keys to a revocation list. Our 
attestation verification circuit will catch this (the quote verification includes checking that the 
TDX TCB status  is OK). So in many cases, just running the verification as usual will start 

failing for unpatched enclaves after a vulnerability is announced.

8.2 Detection and Response: Suppose a vulnerability in TDX is announced. Immediately, 
the following happens:

Pause Accepting Attestations (if needed): If the issue is severe (e.g., enclave secrets 
can be stolen), the safest immediate action might be for the L1 contract (or off-chain 
monitors) to stop accepting new rollup state updates from enclaves until we patch. This 
could be automated if the nature of the vulnerability is such that the quote verification 
would fail anyway (e.g., Intel revokes the old TCB, so the proofs would not verify). If 
not automated, the governance multisig may trigger an emergency brake (this is where 
having an admin capability to pause the contract via a privileged action is useful, though 
that introduces a point of centralized control – ideally, it’s a multisig with community 
oversight).

Notify Node Operators: All operators should update their systems. Intel may provide a 
microcode update; operators apply it (which may require rebooting the machine to load 
new microcode, or using BIOS updates).

Enclave Software Update: If the vulnerability requires changes to enclave code (for 
example, to add a mitigation or  rotate keys), we release a patch for the enclave code as 
well, with a new measurement M_new. This process involves the reproducible build.

Re-Attestation: After patching, each node’s enclave will have either a new measurement 
(if the software changed) or at least a new TCB SVN (due to microcode update). They 
generate new quotes. The L1 contract or verifying parties will now see quotes with the 
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updated status. We likely need to update our allowlist to include the new measurement 
(for software changes), via a governance transaction.

This process essentially mirrors how cloud providers handle SGX/TDX updates but in a 
decentralized way. The attestation evidence itself is used to prove that patching took place – 
because the quote now shows an updated TCB version, which is cryptographically signed by 
the hardware proving the update was applied.

8.3 Rolling Back or Disabling Features: If a vulnerability specifically compromises 
confidentiality but not integrity (say a side-channel that leaks mempool contents), we might 
choose to temporarily disable the encrypted mempool feature rather than halt the whole 
rollup. The enclave could switch to publishing transactions in plaintext (losing MEV 
protection but maintaining liveness) until a fix is out. If integrity is compromised (attackers 
can fake enclaves), that’s more severe as mentioned – likely requiring at least a short halt or 
moving to an alternative security model (perhaps manual validation of each block by a 
committee until TEEs are safe again). These contingency modes should be coded into the 
governance procedures.

8.4 Attestation Key Changes: In some cases, a TCB recovery involves changing the 
attestation keys (for instance, the quoting enclave’s keys). Intel’s whitepaper on SGX TCB 
recovery mentions that a new attestation key (and certificate) may be issued, and old ones 
invalidated. For us, this would mean our attestation verification code might need to be 
updated with collateral (new root CA or CRL). We designed our zkVM verification to be 
upgradable – the verifying program can accept updated Intel root certificates as input if 
needed. The on-chain verifier contract may also need an update if the SNARK’s verification 
key changes (though ideally, we can avoid having to change the SNARK circuit – if the Intel 
root key changes, that could require a circuit update because the public key is hardcoded 
unless we allow it as input). We plan for some flexibility: e.g., support multiple root keys (the 
circuit can be configured to accept either the old or new Intel root by checking against both). 
In any event, such an update would be coordinated with an enclave software update in a hard 
fork-like maneuver for the rollup.

8.5 Sealed Data and Key Rotation: When upgrading enclaves (either routine or emergency), 
preserving or rotating the keys that were in the old enclave is delicate. Specifically:

Root-secret & HPKE hierarchy. If analysis shows the 32-byte root_secret  remained 
confidential, the retiring TD transfers it over the usual attested channel to the new TD, 
which then re-derives the same (Pub_HPKE, Priv_HPKE)  pair. If the secret might have leaked 
(e.g., via a side-channel), the new enclave discards it, samples a fresh root_secret′ , derives 
a new HPKE key-pair, and co-signs an on-chain updateHPKE()  vote. Wallets read the 
event and immediately switch to the published Pub_HPKE′ ; Executors accept both old and 
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new keys for retentionWindow  epochs, then erase the compromised key to prevent 
retrospective decryption.

Enclave Identity Keys (PK_enc): If we launch entirely new enclaves with new code, 
they’ll have new identity keys. The allowlist mechanism on-chain needs updating to 
include the new PKs. If the set of operators is the same, one strategy is to derive the new 
PK from the old one in a way that can be verified. For example, the old enclave could 
sign a statement “I am going to instantiate a new enclave with measurement M_new and 
here is its new PK_new” – this is done right before upgrade, and then on-chain or off-
chain validators can link the old and new identity (so that the operator’s reputation or 
stake carries over). If that’s too complex, just treat it as deploying new nodes and 
removing old ones.

Sealed State: If the enclave had any other persistent state, such as cached cross-chain 
headers or other caches, those either can be discarded or exported. Generally, only 
root_secret  (or its ratcheted successor) and the identity key deserves long-term sealing; 

everything else is expendable or reproducible during boot-strap. We design the state such 
that an enclave can sync from scratch if needed (for example on startup, it can fetch 
necessary data from the L1 contract and from its follower nodes).

8.6 Testing Patches via Attestation: One advantage of attestation is we can even pre-test our 
network’s resilience. For instance, we could simulate a TDX vulnerability by temporarily 
telling our verifier to reject a certain SVN (like mimicking what would happen) and see if 
nodes respond correctly (they should update and re-attest). We can run periodic attestation 
drills, e.g., require nodes to attest at least every X days even if they aren’t producing blocks, 
to ensure their quotes are fresh and not stuck on an old microcode. Rather than requiring 
periodic re-attestation on a fixed schedule, we may enforce it on-demand—specifically, by 
requiring a validator to present a fresh attestation before it is permitted to post a new state 
root to L1. This policy ensures that enclave quotes are up-to-date at the exact moment they 
affect consensus, while avoiding unnecessary re-attestation from idle or standby nodes. This 
reduces the window of vulnerability if someone tries to conceal that they haven’t patched.

8.7 Governance and Social Layer: Ultimately, handling major security events will involve 
human coordination and governance. While we automate what we can (via attestation checks 
and allowlist updates), something like deciding to halt the system or switch to a different 
mode may require multisig or community vote.… For transparency, we include the 
community in these decisions: e.g., if a pause is needed, a governance vote could be held if 
time permits, or a multisig of core contributors acts with the understanding that an ex-post-
facto review by the community will happen.
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8.8 Key Takeaways for TCB Recovery: The ability to prove an update via attestation is a 
powerful tool. Rather than relying solely on trust that operators updated their software, we get 
cryptographic evidence in the next quote. t1 leverages this: the moment a patch is applied, the 
new attestation shows a new SVN or measurement, which the contract can be set to accept 
while rejecting old ones. The design ensures that there is no silent failure: either an enclave 
meets the required TCB level and is allowed, or it doesn’t and is rejected. This motivates 
operators to promptly apply critical patches or they will be unable to participate.

To conclude this section, t1’s security strategy is not static; it is an evolving process that 
involves monitoring (for vulnerabilities), rapid response (through attestation enforcement and 
software updates), and community governance (for making hard calls like pausing or 
changing configurations). While we hope not to need these emergency measures often, they 
are specified and prepared for use. The ultimate goal is to maintain the integrity of the rollup 
even under adverse conditions, and to do so in a way that users and stakeholders can verify 
and trust through the same attestation and transparency mechanisms we’ve built.

9. Conclusion
This document presented a comprehensive design for integrating Trusted Execution 
Environments, specifically Intel TDX enclaves, into the t1 rollup protocol’s architecture. We 
detailed how Executor Trust Domains provide a shielded environment for transaction 
processing and how remote attestation is employed to link the trust in those environments to 
on-chain verification via Remote Attestation proof. By doing so, t1 achieves real-time 
finality of rollup blocks on Ethereum with strong assurances: every state update accepted on 
L1 is backed by a hardware-rooted proof of correct execution.

Our design goes beyond a simple application of TEEs; it introduces a holistic system 
covering key management (partially encrypted mempool for MEV mitigation), cross-chain 
interoperability (enclaves as secure oracles for state reads and transaction relays), and a 
robust lifecycle for multiple enclaves (from deployment, through upgrades, to recovery from 
vulnerabilities). We have demonstrated how the traditionally opaque nature of TEEs can be 
ameliorated by open-source software development, reproducible builds, and on-chain 
attestation verification, thereby aligning with the transparency ethos of blockchain systems.

One of the core contributions of this work is the novel attestation verification pipeline which 
utilizes zero-knowledge proofs to compress and decentralize the verification of enclave 
quotes—so that new enclaves may contribute to real-time proving t1's state towards L1. This 
pipeline exemplifies how advanced cryptography (zkSNARKs) and hardware security can 
complement each other: hardware provides speed and integrity of computation, while 
cryptography provides public verifiability and enforcement. The result is a rollup that neither 
relies on optimistic assumptions with delayed fraud detection and challenge-based re-
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execution, nor incurs the overhead of generating expensive validity proofs for every block, 
yet also avoids blind trust in a single operator. Instead, trust is anchored in widely distributed 
silicon (Intel CPUs in many data centers) and can be monitored by anyone via on-chain 
proofs.

We incorporated multiple layers of fallback not by abandoning the TEE trust model, but by 
enforcing cryptographic and policy-driven controls around attestation and validator 
participation. In particular, t1 ensures that only nodes with allowed, governance-approved 
attestations are permitted to sign rollup state updates. If vulnerabilities arise—whether in 
specific enclave builds or broader hardware classes—those nodes can be revoked or 
suspended immediately, without halting the system. This model allows t1 to remain 
operational even under partial TEE compromise, while retaining the option to escalate to 
stronger verification guarantees, such as on-demand zk-proofs, when warranted.

From a performance and functionality standpoint, the described architecture enables t1 to 
offer unique features: instant t1 block finality on L1 (subject to attestation validation) and an 
MEV-resistant execution layer (through encrypted mempool and fair ordering in enclaves). 
Moreover, it allows cross-rollup composability by enabling secure cross-chain reads and 
writes. A cross-chain yield optimization dApp on t1 could, for example, read yield across 
different lending protocol(s) deployed on different rollups within an enclave and determine 
where to move t1 user funds—all while programmatically using authentic data only. This kind
of fast cross-domain interaction is a stepping stone to unifying liquidity and state across 
rollups, which was one of t1’s motivations.

The document has also outlined a blueprint for how to manage the enclave network 
operationally: how new nodes join (attest to get keys), how upgrades happen (with enclave 
cooperation and governance oversight), and how the system responds to the discovery of 
vulnerabilities (through attestation-driven TCB recovery). These operational guidelines 
ensure that the integration of TEEs does not become a maintenance nightmare or a central 
point of stagnation.

In conclusion, t1’s TEE architecture aims to demonstrate that integrity and confidentiality 
provided by hardware can be combined with the auditability and trustlessness of Ethereum in 
a synergistic way. We transform traditionally private attestation statements into transparent, 
on-chain verifications, thus removing hidden trust relationships and replacing them with 
explicit, cryptographically verifiable ones. The approach can be seen as an intermediate on 
the spectrum of layer 2 designs – more decentralized and secure than a permissioned 
sidechain or state channel, but more performant (in latency terms) than fully zk-verified 
rollups.

We believe this design will be of interest not only to Ethereum researchers and rollup builders 
looking for practical scalability solutions, but also to the broader systems security community 
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as a case study of applying TEEs in a decentralized context. By sharing this detailed 
specification, we invite peer review and collaboration. There are open questions and potential 
extensions: for example, exploring multi-TEE consensus, using formal verification for 
enclave code, or integrating post-quantum attestation signatures. The foundation laid here can 
serve as a basis for such future work.

Ultimately, the success of t1’s approach will be measured by its security in production and the 
value it provides to the Ethereum ecosystem. We have aimed to cover all critical aspects 
around using TEEs towards this goal in this paper. As t1 progresses from design to 
implementation and deployment, this document will serve as the original reference for the 
community about how its TEE components function and how they will be governed. We look 
forward to realizing the potential of real-time, TEE-secured rollups, and will continue to 
update and refine this architecture in partnership with the community.
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Glossary
Trusted Execution Environment (TEE): A secure area of a processor that guarantees 
code and data loaded within to be protected with respect to integrity and confidentiality. 
In a TEE, even a privileged OS cannot access the protected memory. Examples include 
Intel SGX, Intel TDX, AMD SEV-SNP, and ARM TrustZone. TEEs enable remote 
attestation to prove what code is running inside.

Enclave: Common term for a protected container in a TEE. Originally used in context of 
Intel SGX to refer to a secure process enclave. In this paper, we sometimes use “enclave” 
generally to mean a TEE-protected execution context. Specifically, SGX enclave refers 
to a process-level enclave as in SGX, whereas TDX enclave (or Trust Domain) refers to 
a VM-level enclave in TDX. An enclave has a measured identity (like MRENCLAVE or 
similar hash) and can perform secure computations.

Trust Domain (TD): In Intel TDX, a Trust Domain is an entire virtual machine that is 
cryptographically isolated from the host/hypervisor. It’s analogous to an enclave but 
encompasses a full OS and application stack. Memory of a TD is encrypted and integrity-
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protected with a per-TD key. We use “Executor Trust Domain” to mean the TDX VM 
running the rollup node software.

Intel TDX (Trust Domain Extensions): Intel’s technology for confidential VMs. It 
creates Trust Domains on capable CPUs, isolating them via a special CPU mode (SEAM) 
and using a TDX module. TDX uses SGX technology internally for attestation (via TD 
Quoting Enclave). It aims to overcome SGX limitations by allowing legacy OS and 
bigger memory inside the TEE.

Remote Attestation (RA): A process by which a TEE produces a signed statement 
(attestation) about what code is running and the security state of the platform. It usually 
involves a hardware-held key signing a hash of the enclave/TD’s contents. The result is 
an attestation Quote, which can be verified by a remote party using the vendor’s public 
keys. Attestation assures the remote party that they are interacting with a genuine enclave 
running expected code. In our context, attestation is used to convince Ethereum smart 
contracts of the enclave’s identity.

Quote (Attestation Quote): The data blob produced by the quoting enclave (QE/TDQE) 
that contains the enclave’s measurement, TCB status, custom report_data , and a signature 
from the hardware’s attestation key. It is the token of proof for attestation. A quote is 
accompanied by collateral like certs and revocation info so that a verifier can validate it 
fully.

REPORT_DATA: A field in the Intel attestation report into which user-provided data is 
inserted before quoting. Typically used to include a nonce or other context, to prevent 
replay. It’s 64 bytes (for SGX/TDX) and can carry arbitrary info chosen by the attesting 
software. We use report_data to embed nonces, state root hashes, or enclave public keys 
in the quote.

Measurement: A cryptographic hash representing the identity of the enclave or trust 
domain. In SGX, this is called MRENCLAVE (and MRSIGNER for the signing key’s 
hash). In TDX, an equivalent measurement (let’s call it MRTD) is included in the quote. 
The measurement is calculated over the initial code/data loaded into the enclave; if the 
code changes, the measurement changes. Verifiers compare this against expected values 
to decide if the enclave is authorized.

Quoting Enclave (QE / TDQE): An Intel-signed enclave that runs on the host and is 
responsible for signing attestation quotes on behalf of the CPU. For SGX, the quoting 
enclave uses the Provisioning Certification Key (PCK) of the CPU to sign. For TDX, the 
TD Quoting Enclave does similarly for a Trust Domain’s report. It essentially bridges the 
gap between the TEE and an external verifiable signature.
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DCAP (Data Center Attestation Primitives): Intel’s attestation model that allows 
offline verification. It provides the means to fetch the necessary certificates (PCK cert, 
CA certs, TCB info, CRLs) so that a quote can be verified without contacting Intel’s 
online IAS service. DCAP is the method we use, enabling on-chain or off-chain trustless 
verification of quotes.

zkVM (Zero-Knowledge Virtual Machine): A virtual machine that can execute 
programs and produce a zero-knowledge proof of their correct execution. In our design, 
we use the Risc0 zkVM to run the quote verification code, producing a SNARK. The 
zkVM ensures the verification was done correctly without relying on a third-party trust. 
It basically generates a proof of execution trace of the verification algorithm.

zkSNARK (Zero-Knowledge Succinct Non-interactive Argument of Knowledge): A 
type of cryptographic proof that attests to the truth of a statement (e.g., “this attestation 
quote is valid”) without revealing additional information.

Remote Attestation proof (via ZKP): We use a Groth16 SNARK (which requires a one-
time trusted setup) to verify attestation, because it yields small proofs (under 200 bytes) 
and fast verification. SNARKs enable our on-chain contract to confirm heavy 
computations (like ECDSA verifications) had proper outcomes by just checking a small 
proof.

RTP (Real-Time Proofs): In t1, real-time proof denotes the cryptographic assurance that 
each newly proposed roll-up state root originates from an Executor Trust Domain whose 
most recent event-driven attestation has been accepted in NodeRegistry . Concretely, the 
block header is signed by the enclave’s key, the on-chain contract verifies the signature 
with ecrecover , and it confirms the signer’s key is marked allowed—meaning it passed a 
zk-compressed attestation at the latest onboarding, upgrade, or TCB-recovery event. This 
yields near-instant finality for every block without requiring a fresh attestation proof per 
block; attestations are generated only at security-relevant events while block-level 
confirmation remains real-time through signature checks.

Encrypted Mempool (partially‑encrypted): A mempool where only the 
privacy‑sensitive payload of each pending transaction (recipient, value/amount, calldata, 
access‑list, AA fields, intent metadata, etc.) is encrypted, while the header fields needed 
for spam filtering and fee‑based prioritisation— from , nonce , gasLimit , maxFeePerGas , 
maxPriorityFeePerGas , tx‑type  tag, ciphertext length, and the v,r,s  signature—remain in 

plaintext. This design lets sequencers drop invalid or zero‑fee blobs and respect gas 
limits, avoiding the DoS risk of a fully opaque mempool, yet still hides actionable details 
from outside observers until the transaction is executed, thereby mitigating MEV exploits 
such as frontrunning and sandwich attacks. In t1, every Executor Trust Domain 

t1’s TEE Architecture and Remote Attestation 44



deterministically derives an HPKE key‑pair (Pub_HPKE, Priv_HPKE) from a sealed 
root_secret ; Pub_HPKE is published on‑chain (its hash appears in the enclave’s 

attestation as HashPubHPKE ). Users encrypt the payload with Pub_HPKE; enclaves 
decrypt it internally with Priv_HPKE once the transaction is admitted to a block. Key 
rotation and on‑chain attestation ensure that only up‑to‑date, authorised enclaves can ever
read the encrypted portion.

Sealing (Enclave Sealing): The process of an enclave encrypting data to disk such that it 
can be recovered later (by itself or another enclave, depending on policy). Intel SGX 
provides a seal key unique to an enclave’s identity (or signing key) for this purpose. In 
TDX, similar sealing can be done either via SGX enclaves or by the application using a 
derived key. Sealed data is tied to the TEE, meaning outside entities cannot decrypt it. 
We utilize sealing for storing the root_secret  (from which HPKE keys are derived) 
between reboots, etc.

Proof-of-Read Trie: A Merkle trie constructed by the enclave to record all external data 
reads it performed during a rollup block. Each read (from an outside chain or source) is 
logged as a leaf, and the trie’s root hash (Proof-of-Read root) is published. This acts as a 
commitment to those reads, enabling verification that the enclave didn’t fabricate or omit 
external data. It’s analogous to how a Merkle proof commits to a set of values. The term 
“Proof-of-Read” is specific to our design for cross-chain consistency.

TCB (Trusted Computing Base): The set of components that must be trusted for the 
system’s security. In our case, the TCB includes the CPU, its microcode, the TEE 
firmware (TDX module), the attestation enclaves (PCE, QE), and the rollup enclave code 
itself. When we talk about TCB recovery, we mean updating one or more of these 
components to eliminate a vulnerability. The attestation process conveys information 
about the TCB (e.g., CPU SVN, etc.) so verifiers can judge if the TCB is up-to-date.

TCB Recovery: A procedure following discovery of a vulnerability whereby the 
platform’s TCB is updated (patches applied) and the attestation mechanism uses new 
keys or reports to prove that the update happened. It often involves revoking old 
attestation keys so that only updated platforms can produce valid attestations. For t1, 
TCB recovery means all nodes must update and re-attest on a new TCB level, and the 
contracts will reject attestations from before the fix.

SVN (Security Version Number): A number indicating the version of security-relevant 
firmware/microcode. Intel attestation quotes include SVNs for various components (e.g., 
the CPU microcode, the TDX module, etc.). If a vulnerability is fixed, the SVN 
increments. Verifiers compare SVNs to a baseline to ensure the platform is patched. An 
attestation quote might be marked “OutOfDate” if SVNs are below expected.
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Allowlist (of Measurements/Keys): In our context, a list of enclave identities 
(measurements or public keys) that are considered authorized. The on-chain verifier 
contract uses an allowlist of acceptable enclave measurements and may also track 
allowed enclave signing keys. This prevents unauthorized code from being accepted even 
if attested (since only known good measurements are valid). It’s a governance tool to 
manage which enclave versions are allowed.

Multisig (Multisignature Wallet): A wallet or contract that requires multiple parties to 
sign off on an action. Mentioned here as part of governance – e.g., a multisig might 
control upgrades or emergency pauses in t1. Not TEE-specific, but relevant for who 
controls allowlists and upgrades.

Groth16: A specific zkSNARK proving system that yields 3-element proofs and verifies 
quickly (with pairing checks). We use it for attestation verification, referencing that 
verifying a Groth16 proof costs ~250k gas on Ethereum. It requires a trusted setup, but 
many such setups have been performed (including universal ones like Powers of Tau).

Risc0: A particular zkVM implementation based on RISC-V architecture. Risc0 uses a 
STARK (FRI-based) to prove execution and then can output a SNARK. We cited it as our
zkVM of choice because it can run Rust code (like the quote verifier) easily. It’s 
developed by the Risc0 team and used in several projects needing general-purpose ZKP 
computation.

MEV (Maximal Extractable Value): The value that a block producer can extract by 
reordering, including, or censoring transactions. We mention MEV because encrypted 
mempool and fair ordering aim to reduce MEV extraction on t1. TEEs help here by 
hiding transaction info until after ordering is decided.

Side-Channel Attack: An attack that derives secrets from indirect information like 
timing, power consumption, or memory access patterns, rather than breaking 
cryptography head-on. TEEs are known to be vulnerable to certain side channels (e.g., 
cache timing attacks) if countermeasures aren’t in place. We acknowledge this in Section 
7. Side-channel defenses often require both hardware and software strategies.

MRSIGNER: In SGX, the hash of the public key that signed an enclave. Enclaves 
signed by the same key can be given certain privileges like accessing common sealed 
data. While TDX attestation focuses on measurement, one can use signing keys to allow 
a range of code hashes. We use a concept akin to MRSIGNER to allow new enclave 
versions to unseal data from old versions (as long as the signing key is the same). 
Essentially, this trusts the developer signature instead of the exact code identity for 
certain operations.
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PCS (Provisioning Certification Service): Intel’s online service that provides 
attestation collateral – like PCK certificates, revocation lists, TCB info. In DCAP, this is 
often an API to fetch the latest JSON of revocations and such. We input this collateral to 
our verifier. It’s part of the external dependencies for verifying quotes, but once fetched it 
can be reused many times (hence suitable for on-chain after proof generation).

QvE (Quote Verification Enclave): An optional Intel-provided SGX enclave that can 
perform quote verification and output a signed report of the result. We don’t use QvE in 
our design (we do verification in zkVM instead), but it’s a component in Intel’s 
attestation flow for cases where the verifier is on a TEE platform. We mention it only 
insofar as it appears in some references.

Epoch (Rollup Epoch): A period or sequence number in the rollup. Not a TEE term, but 
mentioned when discussing sequencer selection or staking. An epoch might correspond 
to a set of blocks after which something rotates (like keys or duties). If we had an enclave
set performing a consensus, they might have epochs for which ones active.

The above glossary defines key terms used in this document, aiming to clarify their specific 
meanings in the context of t1’s design. Familiarity with these concepts is assumed in the main 
text, but we collate them here for reference and to ensure precision of language given the 
overlapping terminology in hardware security and blockchain domains.
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